--invoking executable-- /home/lorenzo/cfour-2.1/bin/xjoda ************************************************************************* <<< CCCCCC CCCCCC ||| CCCCCC CCCCCC >>> <<< CCC CCC ||| CCC CCC >>> <<< CCC CCC ||| CCC CCC >>> <<< CCC CCC ||| CCC CCC >>> <<< CCC CCC ||| CCC CCC >>> <<< CCC CCC ||| CCC CCC >>> <<< CCCCCC CCCCCC ||| CCCCCC CCCCCC >>> ************************************************************************* **************************************************************** * CFOUR Coupled-Cluster techniques for Computational Chemistry * **************************************************************** Department of Chemistry Institut fuer Physikalische Chemie University of Florida Universitaet Mainz Gainesville, FL 32611, USA D-55099 Mainz, Germany Department of Chemistry Fakultaet fuer Chemie und Biowiss. Johns Hopkins University Karlsruher Institut fuer Technologie Baltimore, MD 21218, USA D-76131 Karlsruhe, Germany Department of Chemistry Department of Physical Chemistry Southern Methodist University Eotvos Lorand University Dallas, TX 75275, USA H-1053 Budapest, Hungary Version 2.1 callista.theory.phys.ucl.ac.uk Tue 16 Mar 15:33:58 GMT 2021 integer*8 version is running ******************************************************************************** * Input from ZMAT file * ******************************************************************************** CFOUR calculation for HF F 0.000000 0.00000000 0.00000000 H 0.000000 3.00000000 0.00000000 *CFOUR(CALC_LEVEL=CCSD COORD=CARTESIAN UNITS=1 REFERENCE=RHF SCF_CONV=10 CC_CONV=10 LINEQ_CONV=10 BASIS=PVDZ CHARGE=0 MULTIPLICITY=1 DBOC=1 FROZEN_CORE=1 MEM_UNIT=GB MEMORY_SIZE=4) %masses 18.99840322 1.0078250321 ******************************************************************************** ------------------------------------------------------------------- CFOUR Control Parameters ------------------------------------------------------------------- External Internal Value Units Name Name ------------------------------------------------------------------- ABCDTYPE IABCDT STANDARD [ 0] *** ANHARMONIC IANHAR OFF [ 0] *** ANH_ALGORIT IANALG STANDARD [ 0] *** ANH_DERIVAT IANDER SECOND [ 1] *** ANH_MODE ANHMOD VIBRATION [ 0] *** ANH_STEPSIZ ICUBST 50000 x 10-6 ANH_SYMMETR IANHSM ABELIAN [ 0] *** AO_LADDERS IAOLAD SINGLEPASS [ 1] *** AV_SCF IAVSCF OFF [ 0] *** BASIS IBASIS PVDZ [ 13] *** BOTHVECTORS BOTHVC OFF [ 0] *** BOX_POTENT IPIAB OFF [ 0] *** BREIT IBREIT OFF [ 0] *** BRUCK_CONV IBRTOL 10D- 4 *** BRUECKNER IBRKNR OFF [ 0] *** BUFFERSIZE IBUFFS 4096 *** CACHE_RECS ICHREC 10 *** CALCLEVEL ICLLVL CCSD [ 10] *** CCORBOPT ICCORB OFF [ 0] x 0.01 CC_CONV ICCCNV 10D- 10 *** CC_EXPORDER ICCEOR 5 *** CC_EXTRAPOL ICCEXT DIIS [ 1] *** CC_GUESS ICCGES MP2 [ 0] *** CC_MAXCYC ICCCYC 100 cycles CC_PROGRAM ICCPRO VCC [ 0] *** CHARGE ICHRGE 0 *** CHOLESKY ICHOLE OFF [ 0] *** CIS_CONV ICISTL 5 *** COMM_SIZE IPSIZE *** *** CONSTANT ICONST OLD [ 1] *** CONTINUUM ICONTU NONE [ 0] *** CONTRACTION ICNTYP GENERAL [ 1] *** COORDINATES ICOORD CARTESIAN [ 1] *** CPHF_CONVER ICPHFT 10D- 16 *** CPHF_MAXCYC ICPHFC 64 cycles CUBIC ICUBIC OFF [ 0] *** CURVILINEAR ICURVY OFF [ 0] *** DBOC IDBOC ON [ 1] *** DCT IDCT OFF [ 0] *** DERIV_LEV IDRLVL SECOND [ 2] *** DEVMEM_SIZE IDVMEM ********* MByte DIAG_MRCC IEOMST 10D- 0 *** DIFF_TYPE IDIFTY RELAXED [ 0] *** DIRECT IDIRCT OFF [ 0] *** DROPMO IDRPMO NONE ECP IECP OFF [ 0] *** EIGENVECTOR IVEC 1 *** EL_ANHARM IELANH OFF [ 0] *** EOMFOLLOW IEOMSR ENERGY [ 0] *** EOMIP IEOMIP OFF [ 0] *** EOMLEVEL HBARFM SAME [ 0] *** EOM_MRCC IMRCCE NEW [ 1] *** EOM_NONIT EOMNON OFF [ 0] *** EOM_NSING IEOMSI 10D- 0 *** EOM_NSTATES IMRCCD DAVIDSON [ 0] *** EOM_NTRIP IEOMTR 10D- 0 *** EOM_ORDER IEXORD ENERGY [ 0] *** EOM_PROPSTA IEOMST 0 *** ESTATE_CONV IEXTOL 10D- 5 *** ESTATE_DIAG IEXDIG ITERATIVE [ 0] *** ESTATE_LOCK IESLOC ON [ 1] *** ESTATE_MAXC IEXMXC 40 *** ESTATE_PROP IEXPRP OFF [ 0] *** EVAL_HESS IRECAL 0 # of cyc. EXCITATION IEXCIT 0 *** EXCITE IEXCIT NONE [ 0] *** EXTERN_POT IEXPOT OFF [ 0] *** FCGRADNEW IFCGNW OFF [ 0] *** FC_FIELD IFINFC 0 x 10-6 FD_CALTYPE IFDCAL GRADONLY [ 0] *** FD_PROJECT IFDPRJ OFF [ 1] *** FD_STEPSIZE IDISFD 0 10-4 bohr FD_USEGROUP IFDGRP FULL [ 0] *** FILE_RECSIZ IFLREC 4096 words FINITE_PERT IFIPER 0 x 10-6 FIXGEOM IFIXGM OFF [ 0] *** FOCK IFOCK AO [ 1] *** FREQ_ALGORI IVIALG STANDARD [ 0] *** FROZEN_CORE IFROCO ON [ 1] *** GAMMA_ABCD IGABCD STORE [ 0] *** GAMMA_ABCI IGABCI STORE [ 0] *** GENBAS_1 IGNBS1 0 *** GENBAS_2 IGNBS2 0 *** GENBAS_3 IGNBS3 0 *** GENBAS_4 IGNBS4 0 *** GEO_CONV ICONTL 5 H/bohr GEO_MAXCYC IOPTCY 50 *** GEO_MAXSTEP IMXSTP 300 millibohr GEO_METHOD INR SINGLE_POINT[ 5] *** GIAO IGIAO OFF [ 1] *** GIMIC IGIMIC OFF [ 0] *** GRID IGRID OFF [ 0] *** GRID_ALGO IGALGO SERIAL [ 0] *** GUESS IGUESS MOREAD [ 0] *** HBAR IHBAR OFF [ 0] *** HESS_TYPE IHESTP SCF [ 0] *** HF2_FILE IHF2Fl USE [ 1] *** HFSTABILITY ISTABL OFF [ 0] *** INCORE INCORE OFF [ 0] *** INPUT_MRCC IMRCC ON [ 1] *** INTEGRALS INTTYP VMOL [ 1] *** JODA_PRINT IJPRNT 0 *** KEYWORD_OUT IDMPKW NO [ 0] *** LINDEP_TOL ILINDP 8 *** LINEQ_CONV IZTACN 10D- 10 cycles LINEQ_EXPOR ILMAXD 5 *** LINEQ_MAXCY ILMAXC 100 *** LINEQ_TYPE ILTYPE DIIS [ 1] *** LOCK_ORBOCC ILOCOC OFF [ 0] *** MEMORY_SIZE IMEMSZ 500000000 words MEM_UNIT IMEMU GB [ 3] *** MRCC IMRCCC OFF [ 0] *** MULTIPLICTY IMULTP 1 *** NACOUPLING IVCOUP OFF [ 0] *** NEGEVAL IDIE ABORT [ 0] *** NEWNORM INEWNO OFF [ 0] *** NON-HF INONHF OFF [ 0] *** NTOP_TAMP ITOPT2 15 *** NUC_MODEL INUCMO POINT [ 0] *** OCCUPATION IOCCU ESTIMATED BY SCF OPEN-SHELL IOPEN SPIN-ORBITAL[ 0] *** OPTVIB IOPTVB OFF [ 0] *** ORBITALS IORBTP STANDARD [ 0] *** PARALLEL IPARAL ON [ 1] *** PARA_INT IPINTS ON [ 1] *** PARA_PRINT IPPRIN 0 *** PERT_ORB IPTORB CANONICAL [ 1] *** POINTS IGRDFD 0 *** PRINT IPRNT 0 *** PROPS IPROPS OFF [ 0] *** PROP_INTEGR IINTYP INTERNAL [ 0] *** PSI IPSI OFF [ 0] *** QC_ALG IQCALG FLM [ 0] *** QC_LINALG IQCLIN TRIDIAG [ 2] *** QC_MAXCYC IQCMAX 10D-100 cycles QC_MAXSCFCY IQCMSC 10D- 15 cycles QC_RTRUST IQCRTR 10D- 0 x 10-3 QC_SKIPSCF IQCSKI OFF [ 0] *** QC_START IQCSTA 10D- 1 *** QRHFGUESS IQGUES OFF [ 0] *** QUARTIC IQUART OFF [ 0] *** RAMAN_INT IRAMIN OFF [ 0] *** RAMAN_ORB IRAMRE UNRELAXED [ 0] *** RDO IRDOFM ON [ 1] *** REDUCE_REPR REDREP Ir [ 0] *** REFERENCE IREFNC RHF [ 0] *** RELATIVIST IRELAT OFF [ 0] *** RELAX_DENS IRDENS ON [ 1] *** RESET_FLAGS IRESET OFF [ 0] *** RESTART_CC ICCRES OFF [ 0] *** ROT_EVEC ROTVEC 0 *** SAVE_INTS ISVINT OFF [ 0] *** SCALE_ON ISTCRT 0 *** SCF_CONV ISCFCV 10D- 10 *** SCF_DAMPING IDAMP 0 x 10-3 SCF_EXPORDE IRPPOR 6 *** SCF_EXPSTAR IRPPLS 8 *** SCF_EXTRAPO IRPP ON [ 1] *** SCF_MAXCYC ISCFCY 150 cycles SCF_NOSTOP ISCFST OFF [ 0] *** SCF_PRINT ISCFPR 0 *** SCF_PROG ISCFPR SCF [ 0] *** SD_FIELD IFINSD 0 x 10-6 SOPERT IPERSO OFF [ 0] *** SPHERICAL IDFGHI ON [ 1] *** SPINORBIT ISOCAL OFF [ 0] *** SPINROTATIO ISRCON OFF [ 0] *** SPIN_FLIP ISPFLP OFF [ 0] *** SPIN_ORBIT ISPORB OFF [ 0] *** SPIN_SCAL ISCSMP OFF [ 0] *** STEEPSCALE ISTPSC 1000 x 10-3 SUBGROUP ISUBGP DEFAULT [ 0] *** SUBGRPAXIS ISBXYZ X [ 0] *** SYMMETRY ISYM ON [ 0] *** SYM_CHECK ISYMCK OVERRIDE [ 1] *** T3_EXTRAPOL IT3EXT OFF [ 0] *** T4_EXTRAPOL IT4EXP OFF [ 0] *** TAMP_SUM IEVERY 5 *** TESTSUITE ITESTS OFF [ 0] *** THERMOCH ITHERM OFF [ 0] *** TOL_CHOLESK ITOLCH 10D- 4 *** TRANGRAD IRESRM OFF [ 0] *** TRANS_INV ITRAIN IGNORE [ 1] *** TREAT_PERT ITREAT SIMULTANEOUS[ 0] *** TRIP_ALGORI ITRALG NORMAL [ 0] *** UIJ_THRESHO IUIJTH 1 *** UNITS IUNITS BOHR [ 1] *** UNOS IUNOS OFF [ 0] *** UPDATE_HESS IHUPDT ON [ 1] *** VIBPHASE ISETPH STANDARD [ 0] *** VIBRATION IVIB ANALYTIC [ 1] *** VIB_ALGORIT IGEALG STANDARD [ 0] *** VNATORB IVNORB OFF [ 0] *** VTRAN IVTRAN FULL/PARTIAL[ 0] *** XFIELD IXEFLD 0 x 10-6 XFORM_TOL IXFTOL 10D- 11 *** YFIELD IYEFLD 0 x 10-6 ZFIELD IZEFLD 0 x 10-6 ZSCALE_EXP IZEXPS OFF [ 0] *** ------------------------------------------------------------------- @GETXYZ-I, 2 atoms read from ZMAT. read masses from ZMAT file read masses from ZMAT file Rotational constants (in cm-1): 6.9889983722 6.9889983722 Rotational constants (in MHz): 209524.9294498081 209524.9294498081 ******************************************************************************** The full molecular point group is CXv . The largest Abelian subgroup of the full molecular point group is C2v . The computational point group is C2v . ******************************************************************************** ---------------------------------------------------------------- Coordinates used in calculation (QCOMP) ---------------------------------------------------------------- Z-matrix Atomic Coordinates (in bohr) Symbol Number X Y Z ---------------------------------------------------------------- F 9 -0.00000000 0.00000000 0.15112669 H 1 0.00000000 0.00000000 -2.84887331 ---------------------------------------------------------------- Interatomic distance matrix (Angstroms) F H [ 1] [ 2] F [ 1] 0.00000 H [ 2] 1.58753 0.00000 rotcon2 Rotational constants (in cm-1): 6.9889983722 0.0000000000 Rotational constants (in MHz): 209524.9294498081 0.0000000000 ECPDATA file not present. Using default ECPDATA. There is 1 frozen-core orbital. There are 19 basis functions. @CHECKOUT-I, Total execution time (CPU/WALL): 0.18/ 0.20 seconds. --executable xjoda finished with status 0 in 0.22 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xvmol SERIAL VERSION OF MOLECULE STARTED ******************************************************************************** INPUT FROM MOL FILE ******************************************************************************** INTGRL 1 0 1 0 0 0 0 0 0 *** CFOUR Program System (Release V0.1) *** CFOUR calculation for HF 2 2 X Y 0.10E-08 0 0 9999.00 3.00 9.00000000 1 3 1 1 1 F #1 -0.000000000000000 0.000000000000000 0.151126692058141 9 3 14710.0000000000 7.210000000000000E-004 -1.650000000000000E-004 0.000000000000000E+000 2207.00000000000 5.553000000000000E-003 -1.308000000000000E-003 0.000000000000000E+000 502.800000000000 2.826700000000000E-002 -6.495000000000000E-003 0.000000000000000E+000 142.600000000000 0.106444000000000 -2.669100000000000E-002 0.000000000000000E+000 46.4700000000000 0.286814000000000 -7.369000000000001E-002 0.000000000000000E+000 16.7000000000000 0.448641000000000 -0.170776000000000 0.000000000000000E+000 6.35600000000000 0.264761000000000 -0.112327000000000 0.000000000000000E+000 1.31600000000000 1.533300000000000E-002 0.562814000000000 0.000000000000000E+000 0.389700000000000 -2.332000000000000E-003 0.568778000000000 1.00000000000000 4 2 22.6700000000000 4.487800000000000E-002 0.000000000000000E+000 4.97700000000000 0.235718000000000 0.000000000000000E+000 1.34700000000000 0.508521000000000 0.000000000000000E+000 0.347100000000000 0.458120000000000 1.00000000000000 1 1 1.64000000000000 1.00000000000000 1.00000000 1 2 1 1 H #2 0.000000000000000 0.000000000000000 -2.848873307941859 4 2 13.0100000000000 1.968500000000000E-002 0.000000000000000E+000 1.96200000000000 0.137977000000000 0.000000000000000E+000 0.444600000000000 0.478148000000000 0.000000000000000E+000 0.122000000000000 0.501240000000000 1.00000000000000 1 1 0.727000000000000 1.00000000000000 FINISH ******************************************************************************** ONE- AND TWO-ELECTRON INTEGRALS OVER SYMMETRY-ADAPTED AOS ARE CALCULATED. SPHERICAL HARMONICS ARE USED. INTEGRALS LESS THAN 0.10E-13 ARE NEGLECTED. NUCLEAR REPULSION ENERGY : 3.0000000000 A.U. @MOLECU-I, ONE ELECTRON INTEGRALS (CPU/WALL): 0.00/ 0.01 SECONDS. @TWOEL-I, 1075 INTEGRALS OF SYMMETRY TYPE I I I I @TWOEL-I, 1590 INTEGRALS OF SYMMETRY TYPE I J I J @TWOEL-I, 1082 INTEGRALS OF SYMMETRY TYPE I I J J @TWOEL-I, 378 INTEGRALS OF SYMMETRY TYPE I J K L @TWOEL-I, TOTAL NUMBER OF 2-E INTEGRALS 4125. @MOLECU-I, TWO ELECTRON INTEGRALS (CPU/WALL): 0.01/ 0.01 SECONDS. @CHECKOUT-I, Total execution time (CPU/WALL): 0.02/ 0.02 seconds. OMP_NUM_THREADS not specified; defaulting to 1 Running with 1 threads/proc --executable xvmol finished with status 0 in 0.04 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xvmol2ja @GETMEM-I, Allocated 3814 MB of main memory. @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xvmol2ja finished with status 0 in 0.02 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xvscf There are 19 functions in the AO basis. There are 4 irreducible representations. Irrep # of functions 1 10 2 4 3 4 4 1 Parameters for SCF calculation: SCF reference function: RHF Maximum number of iterations: 150 Full symmetry point group: CXv Computational point group: C2v Initial density matrix: MOREAD SCF convergence tolerance: 10**(-10) DIIS convergence acceleration: ON Latest start for DIIS: 8 DIIS order: 6 Memory information: 55509 words required. Fock matrices are constructed from AO integral file. @GETMEM-I, Allocated 0 MB of main memory. Initialization and symmetry analysis required 0.003 seconds. @INITGES-I, Occupancies from core Hamiltonian: Alpha population by irrep: 3 1 1 0 Beta population by irrep: 3 1 1 0 total no. of electrons in initial guess : 0.000000000000000E+000 -------------------------------------------------------------------- Iteration Total Energy Largest Density Difference -------------------------------------------------------------------- 0 3.000000000000000 0.0000000000D+00 current occupation vector 3 1 1 0 3 1 1 0 1 -93.515684767919510 0.9046805994D+01 current occupation vector 3 1 1 0 3 1 1 0 2 -92.877680508369338 0.1125726338D+02 current occupation vector 4 0 1 0 4 0 1 0 3 -97.314942182798276 0.1125470218D+02 current occupation vector 3 1 1 0 3 1 1 0 4 -96.845783920740686 0.3640977306D+01 current occupation vector 4 0 1 0 4 0 1 0 5 -98.352335471003386 0.3168084019D+01 current occupation vector 3 1 1 0 3 1 1 0 6 -98.452643953138917 0.2866169941D+01 current occupation vector 3 1 1 0 3 1 1 0 7 -98.984330891705412 0.2503771749D+01 current occupation vector 3 1 1 0 3 1 1 0 8 -99.011203341889782 0.2331034094D+01 current occupation vector 3 1 1 0 3 1 1 0 9 -99.847641867431548 0.9501950692D+00 current occupation vector 3 1 1 0 3 1 1 0 10 -99.849552383845534 0.7879740241D-01 current occupation vector 3 1 1 0 3 1 1 0 11 -99.849750825005302 0.2260390938D-01 current occupation vector 3 1 1 0 3 1 1 0 12 -99.849792247177376 0.1010715092D-01 current occupation vector 3 1 1 0 3 1 1 0 13 -99.849794285465805 0.2269980595D-02 current occupation vector 3 1 1 0 3 1 1 0 14 -99.849794298586346 0.1672974620D-03 current occupation vector 3 1 1 0 3 1 1 0 15 -99.849794298786662 0.2929483662D-04 current occupation vector 3 1 1 0 3 1 1 0 16 -99.849794298790016 0.3796941766D-05 current occupation vector 3 1 1 0 3 1 1 0 17 -99.849794298790471 0.6589791146D-06 current occupation vector 3 1 1 0 3 1 1 0 18 -99.849794298790314 0.1581419122D-06 current occupation vector 3 1 1 0 3 1 1 0 19 -99.849794298790385 0.3096891543D-07 current occupation vector 3 1 1 0 3 1 1 0 20 -99.849794298790428 0.2202870553D-08 current occupation vector 3 1 1 0 3 1 1 0 21 -99.849794298790258 0.2171147706D-09 current occupation vector 3 1 1 0 3 1 1 0 SCF has converged. Density matrix saved to file den.dat total electron number: 10.0000000000000 E(SCF)= -99.849794298790215 0.9737793905D-11 Eigenvector printing suppressed. @PUTMOS-I, Writing converged MOs to NEWMOS. @PUTMOS-I, Symmetry 1 Full Blocks 2 Partial Blocksize 2 @PUTMOS-I, Symmetry 2 Full Blocks 1 Partial Blocksize 0 @PUTMOS-I, Symmetry 3 Full Blocks 1 Partial Blocksize 0 @PUTMOS-I, Symmetry 4 Full Blocks 0 Partial Blocksize 1 @PUTFOCK-I, Writing converged Fock matrix to NEWFOCK. @PUTFOCK-I, Symmetry 1 Full Blocks 2 Partial Blocksize 2 @PUTFOCK-I, Symmetry 2 Full Blocks 1 Partial Blocksize 0 @PUTFOCK-I, Symmetry 3 Full Blocks 1 Partial Blocksize 0 @PUTFOCK-I, Symmetry 4 Full Blocks 0 Partial Blocksize 1 ORBITAL EIGENVALUES (ALPHA) (1H = 27.2113834 eV) MO # E(hartree) E(eV) FULLSYM COMPSYM ---- -------------------- -------------------- ------- --------- 1 1 -26.2784079389 -715.0718335676 SG+ A1 (1) 2 2 -1.4789212563 -40.2434933240 SG+ A1 (1) 3 11 -0.5911301853 -16.0854701119 PI B1 (2) 4 15 -0.5911301853 -16.0854701119 PI B2 (3) 5 3 -0.5463315788 -14.8664380553 SG+ A1 (1) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 6 4 -0.0063583455 -0.1730193768 SG+ A1 (1) 7 5 0.5729787310 15.5915439304 SG+ A1 (1) 8 12 1.3195372410 35.9064337757 PI B1 (2) 9 16 1.3195372410 35.9064337757 PI B2 (3) 10 6 1.3902616571 37.8309429785 SG+ A1 (1) 11 13 1.5821081407 43.0513511963 PI B1 (2) 12 17 1.5821081407 43.0513511963 PI B2 (3) 13 7 1.6522442475 44.9598516890 SG+ A1 (1) 14 8 2.2807696734 62.0628980299 SG+ A1 (1) 15 14 4.0359958733 109.8250311098 PI B1 (2) 16 18 4.0359958733 109.8250311098 PI B2 (3) 17 19 4.0441148284 110.0459591094 DE A2 (4) 18 9 4.0441148284 110.0459591094 DE A1 (1) 19 10 4.1483991298 112.8836792167 SG+ A1 (1) VSCF finished. @CHECKOUT-I, Total execution time (CPU/WALL): 0.02/ 0.02 seconds. --executable xvscf finished with status 0 in 0.04 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xvtran @GETMEM-I, Allocated 3814 MB of main memory. Full RHF integral transformation Frozen-core orbitals requested within analytic derivative calculation Transformation of IIII integrals : 1 pass through the AO integral file was required. 1075 AO integrals were read. 1649 MO integrals were written to HF2. Transformation of IIJJ integrals : 1 pass through the AO integral file was required. 1082 AO integrals were read. 1275 MO integrals were written to HF2. Transformation of IJIJ integrals : 1 pass through the AO integral file was required. 1590 AO integrals were read. 1851 MO integrals were written to HF2. Transformation of IJKL integrals : 1 pass through the AO integral file was required. 378 AO integrals were read. 480 MO integrals were written to HF2. Summary of active molecular orbitals: ------------------------------------------------------------------------ Index Eigenvalue Symmetry Index Eigenvalue Symmetry ------------------------------------------------------------------------ 1 -26.2784079 1 11 4.0441148 1 2 -1.4789213 1 12 4.1483991 1 3 -0.5463316 1 13 1.3195372 2 4 -0.5911302 2 14 1.5821081 2 5 -0.5911302 3 15 4.0359959 2 6 -0.0063583 1 16 1.3195372 3 7 0.5729787 1 17 1.5821081 3 8 1.3902617 1 18 4.0359959 3 9 1.6522442 1 19 4.0441148 4 10 2.2807697 1 ------------------------------------------------------------------------ -26.2784079389198 -1.47892125631452 -0.546331578837546 -0.591130185313957 -0.591130185313753 -6.358345484485258E-003 0.572978731041945 1.39026165712892 1.65224424749551 2.28076967339573 4.04411482840612 4.14839912978069 1.31953724100970 1.58210814067986 4.03599587332437 1.31953724100978 1.58210814067997 4.03599587332437 4.04411482840612 @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xvtran finished with status 0 in 0.03 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xintprc @GETMEM-I, Allocated 3814 MB of main memory. Processing integrals for CCSD calculation. @GMOIAA-I, Processing MO integrals for spin case AA. @GMOIAA-I, Generation of integral list completed. TYPE NUMBER ---- -------- PPPP 1597 PPPH 2066 PPHH 728 PHPH 488 PHHH 327 HHHH 49 TOTAL 5255 @FORMT2-I, Second-order MP correlation energies: ------------------------------------------------ E(SCF) = -99.849794298790 a.u. E2(AA) = -0.028144707275 a.u. E2(AB) = -0.174029345549 a.u. E2(TOT) = -0.230318760099 a.u. Total MP2 energy = -100.080113058889 a.u. ------------------------------------------------ Largest T2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 3 3 6 6]-0.15152 [ 3 3 7 6] 0.03922 [ 3 3 6 7] 0.03922 [ 3 5 6 16]-0.02640 [ 5 3 16 6]-0.02640 [ 3 4 6 13]-0.02640 [ 4 3 13 6]-0.02640 [ 3 3 7 7]-0.02556 [ 5 5 17 17]-0.02535 [ 4 4 14 14]-0.02535 [ 3 5 6 17]-0.02346 [ 5 3 17 6]-0.02346 [ 4 3 14 6]-0.02346 [ 3 4 6 14]-0.02346 [ 5 5 17 16]-0.02133 ----------------------------------------------------------------------------- Norm of T2AB vector ( 1388 symmetry allowed elements): 0.2386154271. ----------------------------------------------------------------------------- @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xintprc finished with status 0 in 0.03 seconds (walltime). calling xvcc --invoking executable-- /home/lorenzo/cfour-2.1/bin/xvcc @GETMEM-I, Allocated 3814 MB of main memory. CCSD energy will be calculated. The total correlation energy is -0.230318760099 a.u. The total correlation energy is -0.226529367960 a.u. Convergence information after 1 iterations: Largest element of residual vector : -0.40222839E-01. Largest element of DIIS residual : -0.40222839E-01. The total correlation energy is -0.236231221553 a.u. Convergence information after 2 iterations: Largest element of residual vector : -0.34982265E-01. Largest element of DIIS residual : -0.33721943E-01. The total correlation energy is -0.237293193104 a.u. Convergence information after 3 iterations: Largest element of residual vector : -0.15124659E-01. Largest element of DIIS residual : -0.59493249E-02. The total correlation energy is -0.241017340575 a.u. Convergence information after 4 iterations: Largest element of residual vector : -0.13385063E-02. Largest element of DIIS residual : -0.62195113E-03. The total correlation energy is -0.241061521527 a.u. Convergence information after 5 iterations: Largest element of residual vector : -0.83708598E-03. Largest element of DIIS residual : 0.15093260E-03. The total correlation energy is -0.241101512424 a.u. Convergence information after 6 iterations: Largest element of residual vector : -0.12458251E-03. Largest element of DIIS residual : 0.54004712E-04. The total correlation energy is -0.241093183202 a.u. Convergence information after 7 iterations: Largest element of residual vector : -0.32308740E-04. Largest element of DIIS residual : 0.14265567E-04. The total correlation energy is -0.241090999312 a.u. Convergence information after 8 iterations: Largest element of residual vector : -0.12292376E-04. Largest element of DIIS residual : -0.41694188E-05. The total correlation energy is -0.241091064827 a.u. Convergence information after 9 iterations: Largest element of residual vector : 0.21019993E-05. Largest element of DIIS residual : 0.78837310E-06. The total correlation energy is -0.241091648956 a.u. Convergence information after 10 iterations: Largest element of residual vector : -0.96316796E-06. Largest element of DIIS residual : -0.51657166E-06. The total correlation energy is -0.241091717119 a.u. Convergence information after 11 iterations: Largest element of residual vector : -0.26336239E-06. Largest element of DIIS residual : -0.14514787E-06. The total correlation energy is -0.241091743542 a.u. Convergence information after 12 iterations: Largest element of residual vector : -0.13463517E-06. Largest element of DIIS residual : -0.41853087E-07. The total correlation energy is -0.241091751428 a.u. Convergence information after 13 iterations: Largest element of residual vector : -0.45901208E-07. Largest element of DIIS residual : -0.21465207E-07. The total correlation energy is -0.241091754002 a.u. Convergence information after 14 iterations: Largest element of residual vector : -0.93258118E-08. Largest element of DIIS residual : -0.54788918E-08. The total correlation energy is -0.241091754917 a.u. Convergence information after 15 iterations: Largest element of residual vector : -0.30312563E-08. Largest element of DIIS residual : -0.11606461E-08. The total correlation energy is -0.241091755341 a.u. Convergence information after 16 iterations: Largest element of residual vector : -0.10754893E-08. Largest element of DIIS residual : -0.42772908E-09. The total correlation energy is -0.241091755478 a.u. Convergence information after 17 iterations: Largest element of residual vector : -0.25744420E-09. Largest element of DIIS residual : -0.77155563E-10. The total correlation energy is -0.241091755522 a.u. Convergence information after 18 iterations: Largest element of residual vector : -0.80793566E-10. Largest element of DIIS residual : -0.49750194E-10. Amplitude equations converged in 18iterations. The total correlation energy is -0.241091755525 a.u. The CC iterations have converged. Largest T1 amplitudes for spin case AA: i a i a i a ----------------------------------------------------------------------------- [ 3 6 ]-0.06880 [ 3 7 ] 0.02172 [ 3 8 ]-0.02158 [ 3 9 ] 0.01451 [ 3 10 ]-0.00853 [ 2 6 ] 0.00541 [ 3 12 ]-0.00282 [ 4 13 ]-0.00278 [ 5 16 ]-0.00278 [ 2 10 ]-0.00254 [ 2 9 ] 0.00253 [ 2 8 ]-0.00214 [ 2 7 ]-0.00116 [ 2 12 ] 0.00076 [ 5 17 ] 0.00070 ----------------------------------------------------------------------------- Norm of T1AA vector ( 27 symmetry allowed elements): 0.0776326635. ----------------------------------------------------------------------------- Largest T2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 3 3 6 6]-0.24770 [ 3 3 7 6] 0.06088 [ 3 3 6 7] 0.06088 [ 3 3 8 6] 0.03551 [ 3 3 6 8] 0.03551 [ 5 5 17 17]-0.02701 [ 4 4 14 14]-0.02701 [ 3 3 7 7]-0.02502 [ 3 3 9 6]-0.02310 [ 3 3 6 9]-0.02310 [ 5 5 17 16]-0.02286 [ 5 5 16 17]-0.02286 [ 4 4 14 13]-0.02286 [ 4 4 13 14]-0.02286 [ 5 3 16 6]-0.02060 ----------------------------------------------------------------------------- Norm of T2AB vector ( 1388 symmetry allowed elements): 0.3198136958. ----------------------------------------------------------------------------- Summary of iterative solution of CC equations ----------------------------------------------------------- Correlation Total Iteration Energy Energy ----------------------------------------------------------- 0 -0.230318760099 -100.080113058889 DIIS 1 -0.226529367960 -100.076323666750 DIIS 2 -0.236231221553 -100.086025520344 DIIS 3 -0.237293193104 -100.087087491894 DIIS 4 -0.241017340575 -100.090811639366 DIIS 5 -0.241061521527 -100.090855820317 DIIS 6 -0.241101512424 -100.090895811214 DIIS 7 -0.241093183202 -100.090887481992 DIIS 8 -0.241090999312 -100.090885298103 DIIS 9 -0.241091064827 -100.090885363618 DIIS 10 -0.241091648956 -100.090885947746 DIIS 11 -0.241091717119 -100.090886015910 DIIS 12 -0.241091743542 -100.090886042332 DIIS 13 -0.241091751428 -100.090886050218 DIIS 14 -0.241091754002 -100.090886052793 DIIS 15 -0.241091754917 -100.090886053707 DIIS 16 -0.241091755341 -100.090886054132 DIIS 17 -0.241091755478 -100.090886054269 DIIS 18 -0.241091755525 -100.090886054315 DIIS ----------------------------------------------------------- A miracle has come to pass. The CC iterations have converged. The reference energy is -99.84979429879021 a.u. The correlation energy is -0.24109175552473 a.u. The total energy is -100.09088605431495 a.u. @CHECKOUT-I, Total execution time (CPU/WALL): 0.07/ 0.04 seconds. --executable xvcc finished with status 0 in 0.06 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xlambda @GETMEM-I, Allocated 3814 MB of main memory. The Lambda equations are solved for CCSD. Initial lambda amplitudes: Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : 0.18659063E-01. Largest element of DIIS residual : 0.18659063E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : 0.59880904E-02. Largest element of DIIS residual : 0.57912907E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : 0.32165654E-02. Largest element of DIIS residual : 0.16954558E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : 0.13524071E-02. Largest element of DIIS residual : 0.44980605E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : 0.25653026E-03. Largest element of DIIS residual : -0.72647345E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : 0.36092526E-04. Largest element of DIIS residual : 0.26552594E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : -0.12393993E-04. Largest element of DIIS residual : -0.61808971E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : -0.38035914E-05. Largest element of DIIS residual : -0.16380123E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : -0.11591309E-05. Largest element of DIIS residual : -0.42226655E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : -0.23784107E-06. Largest element of DIIS residual : -0.22255614E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : -0.13620666E-06. Largest element of DIIS residual : -0.96695632E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : -0.47181814E-07. Largest element of DIIS residual : -0.27792452E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : -0.20591290E-07. Largest element of DIIS residual : -0.11695979E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : -0.55920654E-08. Largest element of DIIS residual : 0.23319583E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : 0.15090174E-08. Largest element of DIIS residual : -0.43229797E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : -0.35439055E-09. Largest element of DIIS residual : 0.15623983E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : 0.75166890E-10. Largest element of DIIS residual : 0.52422880E-10. Amplitude equations converged in 17 iterations. Full Fbar is constructed for CCSD second derivatives The lambda equations have converged. @CHECKOUT-I, Total execution time (CPU/WALL): 0.06/ 0.03 seconds. --executable xlambda finished with status 0 in 0.05 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xdens @GETMEM-I, Allocated 3814 MB of main memory. CCSD density and intermediates are calculated. Unrelaxed density for DBOC is calculated The perturbed orbitals are chosen canonical. sort for dboc ---------------------------------------------------------------------- Natural orbital occupation numbers ---------------------------------------------------------------------- 2.00000 1.98801 1.97957 1.97957 1.85061 0.14619 0.01464 0.01464 0.00806 0.00358 0.00290 0.00290 0.00288 0.00283 0.00283 0.00040 0.00017 0.00017 0.00005 Trace of density matrix : 10.0000000000. ---------------------------------------------------------------------- Density calculation successfully completed. @CHECKOUT-I, Total execution time (CPU/WALL): 0.02/ 0.01 seconds. --executable xdens finished with status 0 in 0.03 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xvdint @GETMEM-I, Allocated 3814 MB of main memory. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. magnet F F Integrals for DBOC will be evaluated First contribution to E(DBOC): 3.89117 cm-1 Second contribution to E(DBOC): -675.53593 cm-1 Evaluation of 1e integral derivatives required 0.08 seconds. Evaluation of 2el integral derivatives Evaluation of 2e integral derivatives required 0.03 seconds. @CHECKOUT-I, Total execution time (CPU/WALL): 0.09/ 0.09 seconds. --executable xvdint finished with status 0 in 0.12 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xcphf @GETMEM-I, Allocated 3814 MB of main memory. Coupled-perturbed HF (CPHF) equations are solved for RHF-CC/MBPT hessian and dipole derivatives. irreducible representation Nr. 1 # geometric perturbations 2 # electric field perturbations 1 irreducible representation Nr. 2 # geometric perturbations 2 # electric field perturbations 1 irreducible representation Nr. 3 # geometric perturbations 2 # electric field perturbations 1 irreducible representation Nr. 4 # geometric perturbations 0 # electric field perturbations 0 There are 3 perturbations within irrep 1. CPHF converged after 16 iterations. Tolerances in treatment of perturbed canonical orbitals: Tol1: 0.00001000 Tol2: 1.00000000 Tolerances in treatment of perturbed canonical orbitals: Tol1: 0.00001000 Tol2: 1.00000000 Tolerances in treatment of perturbed canonical orbitals: Tol1: 0.00001000 Tol2: 1.00000000 There are 3 perturbations within irrep 2. CPHF converged after 16 iterations. Tolerances in treatment of perturbed canonical orbitals: Tol1: 0.00001000 Tol2: 1.00000000 Tolerances in treatment of perturbed canonical orbitals: Tol1: 0.00001000 Tol2: 1.00000000 Tolerances in treatment of perturbed canonical orbitals: Tol1: 0.00001000 Tol2: 1.00000000 Perturbed canonical restriction dropped for orbital pair 3[1] ; 1[2] (U[ij] element of 0.14349D+01 is above threshold) Perturbed canonical restriction dropped for orbital pair 1[2] ; 3[1] (U[ij] element of -0.14349D+01 is above threshold) There are 3 perturbations within irrep 3. CPHF converged after 16 iterations. Tolerances in treatment of perturbed canonical orbitals: Tol1: 0.00001000 Tol2: 1.00000000 Tolerances in treatment of perturbed canonical orbitals: Tol1: 0.00001000 Tol2: 1.00000000 Tolerances in treatment of perturbed canonical orbitals: Tol1: 0.00001000 Tol2: 1.00000000 Perturbed canonical restriction dropped for orbital pair 3[1] ; 1[3] (U[ij] element of 0.14349D+01 is above threshold) Perturbed canonical restriction dropped for orbital pair 1[3] ; 3[1] (U[ij] element of -0.14349D+01 is above threshold) SCF static dipole polarizability -------------------------------- Ex Ey Ez Ex 1.328290 0.000000 0.000000 Ey 0.000000 1.328290 0.000000 Ez 0.000000 0.000000 17.870665 Diagonal Born-Oppenheimer Correction ------------------------------------ HF-SCF 1-el contribution to DBOC is : 51.301335 cm-1 Correlated 1-el contribtion to DBOC is: -2.763641 cm-1 HF-SCF 2-el contribution to DBOC is : -107.444045 cm-1 Correlated 2-el contribtion to DBOC is: 10.310424 cm-1 There are 4 special pairs. @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xcphf finished with status 0 in 0.03 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xsdcc @GETMEM-I, Allocated 3814 MB of main memory. Vibrational frequencies and infrared intensities are calculated at the CCSD level within the harmonic approximation. Perturbed canonical orbitals are used. CPHF coefficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: RHF transformation Transformation of DIIII integral derivatives. 1 pass through the AO integral derivative file was needed. 897 AO integral derivatives were read from file DIIII. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 5302 MO integral derivatives were written to file DERINT. Transformation of DIIJJ integral derivatives. 1 pass through the AO integral derivative file was needed. 847 AO integral derivatives were read from file DIIJJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 3782 MO integral derivatives were written to file DERINT. Transformation of DIJIJ integral derivatives. 1 pass through the AO integral derivative file was needed. 1288 AO integral derivatives were read from file DIJIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 7564 MO integral derivatives were written to file DERINT. Transformation of DIJKL integral derivatives. 1 pass through the AO integral derivative file was needed. 284 AO integral derivatives were read from file DIJKL. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 2244 MO integral derivatives were written to file DERINT. MO basis integral derivatives are being calculated (Symmetry block 1, perturbation 1) First derivative of the wavefunction is calculated (Symmetry block 1, perturbation 1) Frozen core orbitals in analytic derivative calculation Resorts of perturbed amplitudes and integrals required 0.0 seconds. Construction of required 0.0 seconds. Starting iterative solution of the perturbed CC equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 100. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : -0.40666058E-01. Largest element of DIIS residual : -0.40666058E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : -0.29507937E-01. Largest element of DIIS residual : -0.23623014E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : -0.90060129E-02. Largest element of DIIS residual : -0.22295485E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : -0.11337870E-02. Largest element of DIIS residual : 0.50867583E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : -0.30836058E-03. Largest element of DIIS residual : -0.10282547E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : -0.47919397E-04. Largest element of DIIS residual : -0.19947041E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : -0.14431235E-04. Largest element of DIIS residual : 0.41498103E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : -0.32281277E-05. Largest element of DIIS residual : 0.15659629E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : 0.87493788E-06. Largest element of DIIS residual : 0.70828487E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : 0.40311376E-06. Largest element of DIIS residual : 0.33880569E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : 0.21606643E-06. Largest element of DIIS residual : 0.12580122E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : 0.78263963E-07. Largest element of DIIS residual : 0.46620278E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : 0.27465668E-07. Largest element of DIIS residual : 0.91519569E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : 0.53955572E-08. Largest element of DIIS residual : -0.21259607E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : -0.14374936E-08. Largest element of DIIS residual : 0.59377685E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : -0.32617716E-09. Largest element of DIIS residual : 0.16577733E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : -0.12511767E-09. Largest element of DIIS residual : -0.15088950E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 18 iterations: Largest element of residual vector : -0.40197845E-10. Largest element of DIIS residual : -0.65214627E-10. Perturbed amplitude equations converged in 18 iterations. Dominant contributions to perturbed wavefunction: 3 3 6 6 -0.2291214788 ABAB 3 0 6 0 -0.0777115036 AA 3 3 10 6 -0.0464884717 ABAB 3 3 6 10 -0.0464884717 ABAB 3 3 8 6 0.0289408154 ABAB 3 3 6 8 0.0289408154 ABAB 3 0 7 0 0.0261772961 AA 3 3 7 6 0.0252360222 ABAB 3 3 6 7 0.0252360222 ABAB 3 0 10 0 -0.0207098816 AA 3 3 12 6 -0.0196169874 ABAB 3 3 6 12 -0.0196169874 ABAB 3 0 9 0 0.0186441987 AA 3 3 9 6 0.0133336994 ABAB 3 3 6 9 0.0133336994 ABAB 3 3 9 9 0.0115650788 ABAB 3 3 10 7 0.0103785995 ABAB 3 3 7 10 0.0103785995 ABAB 3 0 8 0 -0.0096837503 AA 3 0 12 0 -0.0072088594 AA Total CCSD gradient is -0.037659054288529. norm of converged amps 0.251366436998441 Frozen core orbitals in analytic derivative calculation Starting iterative solution of the perturbed Lambda equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 100. Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : -0.35517696E-01. Largest element of DIIS residual : -0.35517696E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : -0.23116309E-01. Largest element of DIIS residual : -0.22511982E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : -0.97556845E-02. Largest element of DIIS residual : -0.20839688E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : -0.18449318E-02. Largest element of DIIS residual : 0.47670058E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : -0.48005922E-03. Largest element of DIIS residual : -0.10462756E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : -0.71252151E-04. Largest element of DIIS residual : -0.22594343E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : -0.18106867E-04. Largest element of DIIS residual : 0.41484725E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : -0.28516776E-05. Largest element of DIIS residual : 0.17370585E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : 0.13876965E-05. Largest element of DIIS residual : 0.13069268E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : 0.67759947E-06. Largest element of DIIS residual : 0.67991138E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : 0.40858737E-06. Largest element of DIIS residual : 0.20546778E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : 0.16083271E-06. Largest element of DIIS residual : 0.59297407E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : 0.42493445E-07. Largest element of DIIS residual : 0.15005390E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : 0.13182297E-07. Largest element of DIIS residual : -0.27057588E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : -0.18600624E-08. Largest element of DIIS residual : -0.88480130E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : -0.57545890E-09. Largest element of DIIS residual : -0.17669693E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : -0.22606557E-09. Largest element of DIIS residual : -0.92277067E-10. Perturbed Lambda equations converged in 17 iterations. Dominant contributions to perturbed wavefunction: 3 3 6 6 -0.1741453116 ABAB 3 3 10 6 -0.0413144743 ABAB 3 3 6 10 -0.0413144743 ABAB 3 0 6 0 -0.0355493445 AA 3 3 8 6 0.0242315467 ABAB 3 3 6 8 0.0242315467 ABAB 3 3 12 6 -0.0174888077 ABAB 3 3 6 12 -0.0174888077 ABAB 3 0 7 0 0.0160170224 AA 3 0 9 0 0.0143055878 AA 3 0 10 0 -0.0141824819 AA 3 3 7 6 0.0133135271 ABAB 3 3 6 7 0.0133135271 ABAB 3 3 9 9 0.0132680161 ABAB 3 3 9 6 0.0129210388 ABAB 3 3 6 9 0.0129210388 ABAB 3 0 8 0 -0.0103589026 AA 3 3 7 7 0.0098463630 ABAB 3 3 10 7 0.0087878466 ABAB 3 3 7 10 0.0087878466 ABAB Total CCSD gradient is -0.018676081451078. The DBOC first-order density matrix is being calculated (Symmetry block 1, perturbation 1) term 6.040632104495557E-002 final tnorm1 6.142768591601124E-002 <0|L dT/dx|0> 6.142768591601124E-002 norm contr. I: |<0|L dT/dx|0>|^2 3.773360596996126E-003 norm contr. II: <0|[nabla(1+L)e-T][nabla e^T]|0> 6.040632104495557E-002 total norm contribution 6.417968164195170E-002 oo -3.720351512017595E-002 vv -0.106757953803003 vo -0.198289536730216 Correlated perturbed 1-el contribution to DBOC -0.342251005653395 cm**-1 SUM_I |dc_I/dx|^2 contribution to DBOC 0.203417150676991 cm**-1 current total DBOC 622.909999333083 cm**-1 First-order density matrix is being calculated (Symmetry block 1, perturbation 1) There are 4 special pairs. Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.0 seconds. dD(ij)/dx contribution from formdxij 0.00000000000000 0.00001428912637 0.00004343500286 0.00001428912637 0.00029733153380 -0.00047808436706 0.00004343500286 -0.00047808436706 -0.10378097334207 0.00089162940956 0.00089162940956 oo -1.948416469858897E-002 oo 1.948416469858898E-002 Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 16 iterations. U*G(pq,rs) contribution is being calculated (Symmetry block 1, perturbation 1) CCSD contribution to force constants -0.0083546925 0.0083546925 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 CCSD contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.3503148404 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time (CPU/WALL): 0.16/ 0.09 seconds. --executable xsdcc finished with status 0 in 0.11 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xanti @GETMEM-I, Allocated 3814 MB of main memory. CCSD MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xanti finished with status 0 in 0.03 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xbcktrn @GETMEM-I, Allocated 3814 MB of main memory. CCSD MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xbcktrn finished with status 0 in 0.03 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xvdint @GETMEM-I, Allocated 3814 MB of main memory. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. magnet F F Evaluation of 2el integral derivatives Two-electron integral gradient ------------------------------ F #1 z -0.0119106898 H #2 z 0.0119106898 F #1 0.0000000000 0.0000000000 -0.0119106898 H #2 0.0000000000 0.0000000000 0.0119106898 Evaluation of 2e integral derivatives required 0.10 seconds. contribution to Hessian -0.0119106898 0.0119106898 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time (CPU/WALL): 0.08/ 0.09 seconds. --executable xvdint finished with status 0 in 0.11 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xsdcc @GETMEM-I, Allocated 3814 MB of main memory. Vibrational frequencies and infrared intensities are calculated at the CCSD level within the harmonic approximation. Perturbed canonical orbitals are used. CPHF coefficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: RHF transformation Transformation of DIIII integral derivatives. 1 pass through the AO integral derivative file was needed. 897 AO integral derivatives were read from file DIIII. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 5302 MO integral derivatives were written to file DERINT. Transformation of DIIJJ integral derivatives. 1 pass through the AO integral derivative file was needed. 847 AO integral derivatives were read from file DIIJJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 3782 MO integral derivatives were written to file DERINT. Transformation of DIJIJ integral derivatives. 1 pass through the AO integral derivative file was needed. 1288 AO integral derivatives were read from file DIJIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 7564 MO integral derivatives were written to file DERINT. Transformation of DIJKL integral derivatives. 1 pass through the AO integral derivative file was needed. 284 AO integral derivatives were read from file DIJKL. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 2244 MO integral derivatives were written to file DERINT. MO basis integral derivatives are being calculated (Symmetry block 1, perturbation 2) First derivative of the wavefunction is calculated (Symmetry block 1, perturbation 2) Frozen core orbitals in analytic derivative calculation Resorts of perturbed amplitudes and integrals required 0.0 seconds. Construction of required 0.0 seconds. Starting iterative solution of the perturbed CC equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 100. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : 0.40666058E-01. Largest element of DIIS residual : 0.40666058E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : 0.29507937E-01. Largest element of DIIS residual : 0.23623014E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : 0.90060129E-02. Largest element of DIIS residual : 0.22295485E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : 0.11337870E-02. Largest element of DIIS residual : -0.50867583E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : 0.30836058E-03. Largest element of DIIS residual : 0.10282547E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : 0.47919397E-04. Largest element of DIIS residual : 0.19947041E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : 0.14431235E-04. Largest element of DIIS residual : -0.41498103E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : 0.32281277E-05. Largest element of DIIS residual : -0.15659629E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : -0.87493788E-06. Largest element of DIIS residual : -0.70828487E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : -0.40311376E-06. Largest element of DIIS residual : -0.33880569E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : -0.21606643E-06. Largest element of DIIS residual : -0.12580122E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : -0.78263963E-07. Largest element of DIIS residual : -0.46620278E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : -0.27465668E-07. Largest element of DIIS residual : -0.91519570E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : -0.53955572E-08. Largest element of DIIS residual : 0.21259607E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : 0.14374937E-08. Largest element of DIIS residual : -0.59377687E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : 0.32617715E-09. Largest element of DIIS residual : -0.16577734E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : 0.12511764E-09. Largest element of DIIS residual : 0.15088948E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 18 iterations: Largest element of residual vector : 0.40197956E-10. Largest element of DIIS residual : 0.65214676E-10. Perturbed amplitude equations converged in 18 iterations. Dominant contributions to perturbed wavefunction: 3 3 6 6 0.2291214788 ABAB 3 0 6 0 0.0777115036 AA 3 3 10 6 0.0464884717 ABAB 3 3 6 10 0.0464884717 ABAB 3 3 8 6 -0.0289408154 ABAB 3 3 6 8 -0.0289408154 ABAB 3 0 7 0 -0.0261772961 AA 3 3 7 6 -0.0252360222 ABAB 3 3 6 7 -0.0252360222 ABAB 3 0 10 0 0.0207098816 AA 3 3 12 6 0.0196169874 ABAB 3 3 6 12 0.0196169874 ABAB 3 0 9 0 -0.0186441987 AA 3 3 9 6 -0.0133336994 ABAB 3 3 6 9 -0.0133336994 ABAB 3 3 9 9 -0.0115650788 ABAB 3 3 10 7 -0.0103785995 ABAB 3 3 7 10 -0.0103785995 ABAB 3 0 8 0 0.0096837503 AA 3 0 12 0 0.0072088594 AA Total CCSD gradient is 0.037659054288529. norm of converged amps 0.251366436998441 Frozen core orbitals in analytic derivative calculation Starting iterative solution of the perturbed Lambda equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 100. Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : 0.35517696E-01. Largest element of DIIS residual : 0.35517696E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : 0.23116309E-01. Largest element of DIIS residual : 0.22511982E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : 0.97556845E-02. Largest element of DIIS residual : 0.20839688E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : 0.18449318E-02. Largest element of DIIS residual : -0.47670058E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : 0.48005922E-03. Largest element of DIIS residual : 0.10462756E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : 0.71252151E-04. Largest element of DIIS residual : 0.22594343E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : 0.18106867E-04. Largest element of DIIS residual : -0.41484725E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : 0.28516776E-05. Largest element of DIIS residual : -0.17370585E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : -0.13876965E-05. Largest element of DIIS residual : -0.13069268E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : -0.67759947E-06. Largest element of DIIS residual : -0.67991138E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : -0.40858737E-06. Largest element of DIIS residual : -0.20546778E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : -0.16083271E-06. Largest element of DIIS residual : -0.59297407E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : -0.42493445E-07. Largest element of DIIS residual : -0.15005390E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : -0.13182297E-07. Largest element of DIIS residual : 0.27057588E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : 0.18600624E-08. Largest element of DIIS residual : 0.88480130E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : 0.57545890E-09. Largest element of DIIS residual : 0.17669693E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : 0.22606551E-09. Largest element of DIIS residual : 0.92277034E-10. Perturbed Lambda equations converged in 17 iterations. Dominant contributions to perturbed wavefunction: 3 3 6 6 0.1741453116 ABAB 3 3 10 6 0.0413144743 ABAB 3 3 6 10 0.0413144743 ABAB 3 0 6 0 0.0355493445 AA 3 3 8 6 -0.0242315467 ABAB 3 3 6 8 -0.0242315467 ABAB 3 3 12 6 0.0174888077 ABAB 3 3 6 12 0.0174888077 ABAB 3 0 7 0 -0.0160170224 AA 3 0 9 0 -0.0143055878 AA 3 0 10 0 0.0141824819 AA 3 3 7 6 -0.0133135271 ABAB 3 3 6 7 -0.0133135271 ABAB 3 3 9 9 -0.0132680161 ABAB 3 3 9 6 -0.0129210388 ABAB 3 3 6 9 -0.0129210388 ABAB 3 0 8 0 0.0103589026 AA 3 3 7 7 -0.0098463630 ABAB 3 3 10 7 -0.0087878466 ABAB 3 3 7 10 -0.0087878466 ABAB Total CCSD gradient is 0.018676081451078. The DBOC first-order density matrix is being calculated (Symmetry block 1, perturbation 2) term 6.040632104495552E-002 final tnorm1 -6.142768591601124E-002 <0|L dT/dx|0> -6.142768591601124E-002 norm contr. I: |<0|L dT/dx|0>|^2 3.773360596996126E-003 norm contr. II: <0|[nabla(1+L)e-T][nabla e^T]|0> 6.040632104495552E-002 total norm contribution 6.417968164195165E-002 oo -6.299818618038530E-002 vv -1.52815497734030 vo 2.26959702022871 Correlated perturbed 1-el contribution to DBOC 0.678443856708020 cm**-1 SUM_I |dc_I/dx|^2 contribution to DBOC 3.83568654560132 cm**-1 current total DBOC 627.424129735393 cm**-1 First-order density matrix is being calculated (Symmetry block 1, perturbation 2) There are 4 special pairs. Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.0 seconds. dD(ij)/dx contribution from formdxij 0.00000000000000 -0.00001428912637 -0.00004343500286 -0.00001428912637 -0.00029733153380 0.00047808436706 -0.00004343500286 0.00047808436706 0.10378097334207 -0.00089162940956 -0.00089162940956 oo 1.948416469858897E-002 oo -1.948416469858898E-002 Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 16 iterations. U*G(pq,rs) contribution is being calculated (Symmetry block 1, perturbation 2) CCSD contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0083546925 -0.0083546925 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 CCSD contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.3503148404 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time (CPU/WALL): 0.16/ 0.09 seconds. --executable xsdcc finished with status 0 in 0.11 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xanti @GETMEM-I, Allocated 3814 MB of main memory. CCSD MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xanti finished with status 0 in 0.02 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xbcktrn @GETMEM-I, Allocated 3814 MB of main memory. CCSD MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xbcktrn finished with status 0 in 0.03 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xvdint @GETMEM-I, Allocated 3814 MB of main memory. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. magnet F F Evaluation of 2el integral derivatives Two-electron integral gradient ------------------------------ F #1 z 0.0119106898 H #2 z -0.0119106898 F #1 0.0000000000 0.0000000000 0.0119106898 H #2 0.0000000000 0.0000000000 -0.0119106898 Evaluation of 2e integral derivatives required 0.10 seconds. contribution to Hessian 0.0119106898 -0.0119106898 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time (CPU/WALL): 0.08/ 0.09 seconds. --executable xvdint finished with status 0 in 0.11 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xsdcc @GETMEM-I, Allocated 3814 MB of main memory. Vibrational frequencies and infrared intensities are calculated at the CCSD level within the harmonic approximation. Perturbed canonical orbitals are used. CPHF coefficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: RHF transformation Transformation of DIIIJ integral derivatives. 3 passes through the AO integral derivative file were needed. 1888 AO integral derivatives were read from file DIIIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 9703 MO integral derivatives were written to file DERINT. Transformation of DIIJK integral derivatives. 2 passes through the AO integral derivative file were needed. 442 AO integral derivatives were read from file DIIJK. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 2530 MO integral derivatives were written to file DERINT. Transformation of DIJIK integral derivatives. 2 passes through the AO integral derivative file were needed. 724 AO integral derivatives were read from file DIJIK. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 5060 MO integral derivatives were written to file DERINT. MO basis integral derivatives are being calculated (Symmetry block 2, perturbation 1) First derivative of the wavefunction is calculated (Symmetry block 2, perturbation 1) Frozen core orbitals in analytic derivative calculation Resorts of perturbed amplitudes and integrals required 0.0 seconds. Construction of required 0.0 seconds. Starting iterative solution of the perturbed CC equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 100. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : -0.98409391E-02. Largest element of DIIS residual : -0.98409391E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : -0.11051633E-02. Largest element of DIIS residual : -0.12210302E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : -0.24740133E-02. Largest element of DIIS residual : -0.18258811E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : -0.18163361E-02. Largest element of DIIS residual : -0.83242438E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : -0.77118181E-03. Largest element of DIIS residual : -0.22892173E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : -0.21094164E-03. Largest element of DIIS residual : 0.48024688E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : -0.34117507E-04. Largest element of DIIS residual : 0.16917194E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : 0.12114333E-04. Largest element of DIIS residual : 0.24034992E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : 0.12175200E-05. Largest element of DIIS residual : 0.13798147E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : 0.38799858E-06. Largest element of DIIS residual : 0.17742209E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : 0.17793355E-06. Largest element of DIIS residual : 0.13172157E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : 0.46600920E-07. Largest element of DIIS residual : 0.43928751E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : 0.32074389E-07. Largest element of DIIS residual : 0.24037594E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : 0.18927761E-07. Largest element of DIIS residual : 0.63864015E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : 0.32805838E-08. Largest element of DIIS residual : -0.84703705E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : 0.15857676E-08. Largest element of DIIS residual : 0.13978160E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : 0.84420562E-09. Largest element of DIIS residual : 0.15949461E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 18 iterations: Largest element of residual vector : 0.22725660E-09. Largest element of DIIS residual : -0.39178453E-10. Perturbed amplitude equations converged in 18 iterations. Dominant contributions to perturbed wavefunction: 3 3 13 6 -0.0158849253 ABAB 3 3 6 13 -0.0158849253 ABAB 3 3 14 6 -0.0138213065 ABAB 3 3 6 14 -0.0138213065 ABAB 3 2 15 6 0.0094998737 ABAB 2 3 6 15 0.0094998737 ABAB 4 4 14 9 0.0085129826 ABAB 4 4 9 14 0.0085129826 ABAB 3 0 14 0 0.0084848243 AA 4 2 12 6 0.0079316528 ABAB 2 4 6 12 0.0079316528 ABAB 4 3 9 6 0.0075254067 ABAB 3 4 6 9 0.0075254067 ABAB 4 4 13 9 0.0072128449 ABAB 4 4 9 13 0.0072128449 ABAB 4 3 9 9 0.0067689251 ABAB 3 4 9 9 0.0067689251 ABAB 5 4 17 9 0.0067012307 ABAB 4 5 9 17 0.0067012307 ABAB 4 3 14 14 -0.0064722363 ABAB norm of converged amps 6.483301080053451E-002 Frozen core orbitals in analytic derivative calculation Starting iterative solution of the perturbed Lambda equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 100. Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : -0.85445194E-02. Largest element of DIIS residual : -0.85445194E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : 0.90868708E-03. Largest element of DIIS residual : 0.90805474E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : -0.20127890E-02. Largest element of DIIS residual : -0.14243397E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : -0.14360800E-02. Largest element of DIIS residual : -0.74499087E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : -0.72382014E-03. Largest element of DIIS residual : -0.22430640E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : -0.19484998E-03. Largest element of DIIS residual : 0.51859200E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : -0.36641106E-04. Largest element of DIIS residual : 0.19136726E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : 0.10592881E-04. Largest element of DIIS residual : 0.30164654E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : 0.14858307E-05. Largest element of DIIS residual : 0.15586854E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : 0.45842831E-06. Largest element of DIIS residual : 0.20909219E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : 0.19695630E-06. Largest element of DIIS residual : 0.15301119E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : 0.68658185E-07. Largest element of DIIS residual : 0.51944786E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : 0.43795104E-07. Largest element of DIIS residual : 0.31742677E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : 0.29521269E-07. Largest element of DIIS residual : -0.12318287E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : 0.79604734E-08. Largest element of DIIS residual : -0.25548947E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : 0.35313576E-08. Largest element of DIIS residual : 0.23224324E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : 0.11808232E-08. Largest element of DIIS residual : 0.24904935E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 18 iterations: Largest element of residual vector : 0.28137148E-09. Largest element of DIIS residual : -0.81167930E-10. Perturbed Lambda equations converged in 18 iterations. Dominant contributions to perturbed wavefunction: 3 3 13 6 -0.0143995953 ABAB 3 3 6 13 -0.0143995953 ABAB 3 3 14 6 -0.0131065593 ABAB 3 3 6 14 -0.0131065593 ABAB 3 2 15 6 0.0086887800 ABAB 2 3 6 15 0.0086887800 ABAB 4 4 14 9 0.0086378916 ABAB 4 4 9 14 0.0086378916 ABAB 3 0 14 0 0.0077462231 AA 4 4 13 9 0.0073272586 ABAB 4 4 9 13 0.0073272586 ABAB 4 2 12 6 0.0070377686 ABAB 2 4 6 12 0.0070377686 ABAB 5 4 17 9 0.0068469565 ABAB 4 5 9 17 0.0068469565 ABAB 4 3 9 6 0.0068046735 ABAB 3 4 6 9 0.0068046735 ABAB 4 3 9 9 0.0063574325 ABAB 3 4 9 9 0.0063574325 ABAB 4 3 14 14 -0.0060918767 ABAB The DBOC first-order density matrix is being calculated (Symmetry block 2, perturbation 1) term 4.754092090370004E-003 final tnorm 0.890223832619220 norm contr. I: |<0|L dT/dx|0>|^2 0.000000000000000E+000 norm contr. II: <0|[nabla(1+L)e-T][nabla e^T]|0> 4.754092090370004E-003 total norm contribution 4.754092090370004E-003 oo -1.989197273240783E-002 vv 1.173944478996098E-002 vo 1.498574887903126E-002 Correlated perturbed 1-el contribution to DBOC 6.833220936584406E-003 cm**-1 SUM_I |dc_I/dx|^2 contribution to DBOC 1.506806893300256E-002 cm**-1 current total DBOC 627.446031025262 cm**-1 First-order density matrix is being calculated (Symmetry block 2, perturbation 1) There are 4 special pairs. Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.0 seconds. dD(ij)/dx contribution from formdxij 0.00000003990490 0.00001325744996 -0.00046175549973 0.00000003990490 0.00001325744996 -0.00046175549973 oo 9.739203551698106E-005 oo -9.739203551698106E-005 Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 15 iterations. U*G(pq,rs) contribution is being calculated (Symmetry block 2, perturbation 1) CCSD contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0174256879 0.0174256879 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 CCSD contribution to dipole derivatives 0.0000000000 0.0000000000 -0.0067351121 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time (CPU/WALL): 0.08/ 0.08 seconds. --executable xsdcc finished with status 0 in 0.10 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xanti @GETMEM-I, Allocated 3814 MB of main memory. CCSD MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xanti finished with status 0 in 0.02 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xbcktrn @GETMEM-I, Allocated 3814 MB of main memory. CCSD MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xbcktrn finished with status 0 in 0.02 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xvdint @GETMEM-I, Allocated 3814 MB of main memory. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. magnet F F Evaluation of 2el integral derivatives Two-electron integral gradient ------------------------------ F #1 z 0.0000000000 H #2 z 0.0000000000 F #1 -0.0003994593 0.0000000000 0.0000000000 H #2 0.0003994593 0.0000000000 0.0000000000 Evaluation of 2e integral derivatives required 0.10 seconds. contribution to Hessian 0.0000000000 0.0000000000 -0.0003994593 0.0003994593 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time (CPU/WALL): 0.08/ 0.08 seconds. --executable xvdint finished with status 0 in 0.11 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xsdcc @GETMEM-I, Allocated 3814 MB of main memory. Vibrational frequencies and infrared intensities are calculated at the CCSD level within the harmonic approximation. Perturbed canonical orbitals are used. CPHF coefficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: RHF transformation Transformation of DIIIJ integral derivatives. 3 passes through the AO integral derivative file were needed. 1888 AO integral derivatives were read from file DIIIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 9703 MO integral derivatives were written to file DERINT. Transformation of DIIJK integral derivatives. 2 passes through the AO integral derivative file were needed. 442 AO integral derivatives were read from file DIIJK. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 2530 MO integral derivatives were written to file DERINT. Transformation of DIJIK integral derivatives. 2 passes through the AO integral derivative file were needed. 724 AO integral derivatives were read from file DIJIK. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 5060 MO integral derivatives were written to file DERINT. MO basis integral derivatives are being calculated (Symmetry block 2, perturbation 2) First derivative of the wavefunction is calculated (Symmetry block 2, perturbation 2) Frozen core orbitals in analytic derivative calculation Resorts of perturbed amplitudes and integrals required 0.0 seconds. Construction of required 0.0 seconds. Starting iterative solution of the perturbed CC equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 100. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : 0.98409391E-02. Largest element of DIIS residual : 0.98409391E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : 0.11051633E-02. Largest element of DIIS residual : 0.12210302E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : 0.24740133E-02. Largest element of DIIS residual : 0.18258811E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : 0.18163361E-02. Largest element of DIIS residual : 0.83242438E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : 0.77118181E-03. Largest element of DIIS residual : 0.22892173E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : 0.21094164E-03. Largest element of DIIS residual : -0.48024688E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : 0.34117507E-04. Largest element of DIIS residual : -0.16917194E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : -0.12114333E-04. Largest element of DIIS residual : -0.24034992E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : -0.12175200E-05. Largest element of DIIS residual : -0.13798147E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : -0.38799858E-06. Largest element of DIIS residual : -0.17742209E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : -0.17793355E-06. Largest element of DIIS residual : -0.13172157E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : -0.46600920E-07. Largest element of DIIS residual : -0.43928751E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : -0.32074389E-07. Largest element of DIIS residual : -0.24037594E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : -0.18927761E-07. Largest element of DIIS residual : -0.63864015E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : -0.32805838E-08. Largest element of DIIS residual : 0.84703705E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : -0.15857676E-08. Largest element of DIIS residual : -0.13978160E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : -0.84420560E-09. Largest element of DIIS residual : -0.15949460E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 18 iterations: Largest element of residual vector : -0.22725661E-09. Largest element of DIIS residual : 0.39178446E-10. Perturbed amplitude equations converged in 18 iterations. Dominant contributions to perturbed wavefunction: 3 3 13 6 0.0158849253 ABAB 3 3 6 13 0.0158849253 ABAB 3 3 14 6 0.0138213065 ABAB 3 3 6 14 0.0138213065 ABAB 3 2 15 6 -0.0094998737 ABAB 2 3 6 15 -0.0094998737 ABAB 4 4 14 9 -0.0085129826 ABAB 4 4 9 14 -0.0085129826 ABAB 3 0 14 0 -0.0084848243 AA 4 2 12 6 -0.0079316528 ABAB 2 4 6 12 -0.0079316528 ABAB 4 3 9 6 -0.0075254067 ABAB 3 4 6 9 -0.0075254067 ABAB 4 4 13 9 -0.0072128449 ABAB 4 4 9 13 -0.0072128449 ABAB 4 3 9 9 -0.0067689251 ABAB 3 4 9 9 -0.0067689251 ABAB 5 4 17 9 -0.0067012307 ABAB 4 5 9 17 -0.0067012307 ABAB 4 3 14 14 0.0064722363 ABAB norm of converged amps 6.483301080053454E-002 Frozen core orbitals in analytic derivative calculation Starting iterative solution of the perturbed Lambda equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 100. Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : 0.85445194E-02. Largest element of DIIS residual : 0.85445194E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : -0.90868708E-03. Largest element of DIIS residual : -0.90805474E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : 0.20127890E-02. Largest element of DIIS residual : 0.14243397E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : 0.14360800E-02. Largest element of DIIS residual : 0.74499087E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : 0.72382014E-03. Largest element of DIIS residual : 0.22430640E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : 0.19484998E-03. Largest element of DIIS residual : -0.51859200E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : 0.36641106E-04. Largest element of DIIS residual : -0.19136726E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : -0.10592881E-04. Largest element of DIIS residual : -0.30164654E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : -0.14858307E-05. Largest element of DIIS residual : -0.15586854E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : -0.45842831E-06. Largest element of DIIS residual : -0.20909219E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : -0.19695630E-06. Largest element of DIIS residual : -0.15301119E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : -0.68658185E-07. Largest element of DIIS residual : -0.51944786E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : -0.43795104E-07. Largest element of DIIS residual : -0.31742677E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : -0.29521269E-07. Largest element of DIIS residual : 0.12318287E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : -0.79604735E-08. Largest element of DIIS residual : 0.25548947E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : -0.35313576E-08. Largest element of DIIS residual : -0.23224324E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : -0.11808232E-08. Largest element of DIIS residual : -0.24904934E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 18 iterations: Largest element of residual vector : -0.28137147E-09. Largest element of DIIS residual : 0.81167924E-10. Perturbed Lambda equations converged in 18 iterations. Dominant contributions to perturbed wavefunction: 3 3 13 6 0.0143995953 ABAB 3 3 6 13 0.0143995953 ABAB 3 3 14 6 0.0131065593 ABAB 3 3 6 14 0.0131065593 ABAB 3 2 15 6 -0.0086887800 ABAB 2 3 6 15 -0.0086887800 ABAB 4 4 14 9 -0.0086378916 ABAB 4 4 9 14 -0.0086378916 ABAB 3 0 14 0 -0.0077462231 AA 4 4 13 9 -0.0073272586 ABAB 4 4 9 13 -0.0073272586 ABAB 4 2 12 6 -0.0070377686 ABAB 2 4 6 12 -0.0070377686 ABAB 5 4 17 9 -0.0068469565 ABAB 4 5 9 17 -0.0068469565 ABAB 4 3 9 6 -0.0068046735 ABAB 3 4 6 9 -0.0068046735 ABAB 4 3 9 9 -0.0063574325 ABAB 3 4 9 9 -0.0063574325 ABAB 4 3 14 14 0.0060918767 ABAB The DBOC first-order density matrix is being calculated (Symmetry block 2, perturbation 2) term 4.754092090370014E-003 final tnorm 0.890223832619220 norm contr. I: |<0|L dT/dx|0>|^2 0.000000000000000E+000 norm contr. II: <0|[nabla(1+L)e-T][nabla e^T]|0> 4.754092090370014E-003 total norm contribution 4.754092090370014E-003 oo -0.383475569266592 vv 0.130586077051150 vo 0.220649520575965 Correlated perturbed 1-el contribution to DBOC -3.223997163947628E-002 cm**-1 SUM_I |dc_I/dx|^2 contribution to DBOC 0.284127415422739 cm**-1 current total DBOC 627.697918469045 cm**-1 First-order density matrix is being calculated (Symmetry block 2, perturbation 2) There are 4 special pairs. Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.0 seconds. dD(ij)/dx contribution from formdxij -0.00000003990490 -0.00001325744996 0.00046175549973 -0.00000003990490 -0.00001325744996 0.00046175549973 oo -9.739203551695807E-005 oo 9.739203551695807E-005 Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 15 iterations. U*G(pq,rs) contribution is being calculated (Symmetry block 2, perturbation 2) CCSD contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0174256879 -0.0174256879 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 CCSD contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0067351121 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time (CPU/WALL): 0.08/ 0.08 seconds. --executable xsdcc finished with status 0 in 0.10 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xanti @GETMEM-I, Allocated 3814 MB of main memory. CCSD MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xanti finished with status 0 in 0.03 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xbcktrn @GETMEM-I, Allocated 3814 MB of main memory. CCSD MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xbcktrn finished with status 0 in 0.03 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xvdint @GETMEM-I, Allocated 3814 MB of main memory. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. magnet F F Evaluation of 2el integral derivatives Two-electron integral gradient ------------------------------ F #1 z 0.0000000000 H #2 z 0.0000000000 F #1 0.0003994593 0.0000000000 0.0000000000 H #2 -0.0003994593 0.0000000000 0.0000000000 Evaluation of 2e integral derivatives required 0.10 seconds. contribution to Hessian 0.0000000000 0.0000000000 0.0003994593 -0.0003994593 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time (CPU/WALL): 0.08/ 0.09 seconds. --executable xvdint finished with status 0 in 0.11 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xsdcc @GETMEM-I, Allocated 3814 MB of main memory. Vibrational frequencies and infrared intensities are calculated at the CCSD level within the harmonic approximation. Perturbed canonical orbitals are used. CPHF coefficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: RHF transformation Transformation of DIIIJ integral derivatives. 3 passes through the AO integral derivative file were needed. 1888 AO integral derivatives were read from file DIIIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 9703 MO integral derivatives were written to file DERINT. Transformation of DIIJK integral derivatives. 2 passes through the AO integral derivative file were needed. 442 AO integral derivatives were read from file DIIJK. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 2530 MO integral derivatives were written to file DERINT. Transformation of DIJIK integral derivatives. 2 passes through the AO integral derivative file were needed. 724 AO integral derivatives were read from file DIJIK. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 5060 MO integral derivatives were written to file DERINT. MO basis integral derivatives are being calculated (Symmetry block 3, perturbation 1) First derivative of the wavefunction is calculated (Symmetry block 3, perturbation 1) Frozen core orbitals in analytic derivative calculation Resorts of perturbed amplitudes and integrals required 0.0 seconds. Construction of required 0.0 seconds. Starting iterative solution of the perturbed CC equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 100. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : -0.98409391E-02. Largest element of DIIS residual : -0.98409391E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : -0.11051633E-02. Largest element of DIIS residual : -0.12210302E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : -0.24740133E-02. Largest element of DIIS residual : -0.18258811E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : -0.18163361E-02. Largest element of DIIS residual : -0.83242438E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : -0.77118181E-03. Largest element of DIIS residual : -0.22892173E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : -0.21094164E-03. Largest element of DIIS residual : 0.48024688E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : -0.34117507E-04. Largest element of DIIS residual : 0.16917194E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : 0.12114333E-04. Largest element of DIIS residual : 0.24034992E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : 0.12175200E-05. Largest element of DIIS residual : 0.13798147E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : 0.38799858E-06. Largest element of DIIS residual : 0.17742209E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : 0.17793355E-06. Largest element of DIIS residual : 0.13172157E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : 0.46600920E-07. Largest element of DIIS residual : 0.43928751E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : 0.32074389E-07. Largest element of DIIS residual : 0.24037594E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : 0.18927761E-07. Largest element of DIIS residual : 0.63864015E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : 0.32805838E-08. Largest element of DIIS residual : -0.84703705E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : 0.15857676E-08. Largest element of DIIS residual : 0.13978160E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : 0.84420561E-09. Largest element of DIIS residual : 0.15949461E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 18 iterations: Largest element of residual vector : 0.22725660E-09. Largest element of DIIS residual : -0.39178452E-10. Perturbed amplitude equations converged in 18 iterations. Dominant contributions to perturbed wavefunction: 3 3 16 6 -0.0158849253 ABAB 3 3 6 16 -0.0158849253 ABAB 3 3 17 6 -0.0138213065 ABAB 3 3 6 17 -0.0138213065 ABAB 3 2 18 6 0.0094998737 ABAB 2 3 6 18 0.0094998737 ABAB 5 5 17 9 0.0085129826 ABAB 5 5 9 17 0.0085129826 ABAB 3 0 17 0 0.0084848243 AA 5 2 12 6 0.0079316528 ABAB 2 5 6 12 0.0079316528 ABAB 5 3 9 6 0.0075254067 ABAB 3 5 6 9 0.0075254067 ABAB 5 5 16 9 0.0072128449 ABAB 5 5 9 16 0.0072128449 ABAB 5 3 9 9 0.0067689251 ABAB 3 5 9 9 0.0067689251 ABAB 5 4 9 14 0.0067012307 ABAB 4 5 14 9 0.0067012307 ABAB 5 3 17 17 -0.0064722363 ABAB norm of converged amps 6.483301080084410E-002 Frozen core orbitals in analytic derivative calculation Starting iterative solution of the perturbed Lambda equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 100. Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : -0.85445194E-02. Largest element of DIIS residual : -0.85445194E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : 0.90868708E-03. Largest element of DIIS residual : 0.90805474E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : -0.20127890E-02. Largest element of DIIS residual : -0.14243397E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : -0.14360800E-02. Largest element of DIIS residual : -0.74499087E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : -0.72382014E-03. Largest element of DIIS residual : -0.22430640E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : -0.19484998E-03. Largest element of DIIS residual : 0.51859200E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : -0.36641106E-04. Largest element of DIIS residual : 0.19136726E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : 0.10592881E-04. Largest element of DIIS residual : 0.30164654E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : 0.14858307E-05. Largest element of DIIS residual : 0.15586854E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : 0.45842831E-06. Largest element of DIIS residual : 0.20909219E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : 0.19695630E-06. Largest element of DIIS residual : 0.15301119E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : 0.68658185E-07. Largest element of DIIS residual : 0.51944786E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : 0.43795104E-07. Largest element of DIIS residual : 0.31742677E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : 0.29521269E-07. Largest element of DIIS residual : -0.12318287E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : 0.79604735E-08. Largest element of DIIS residual : -0.25548947E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : 0.35313576E-08. Largest element of DIIS residual : 0.23224324E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : 0.11808232E-08. Largest element of DIIS residual : 0.24904934E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 18 iterations: Largest element of residual vector : 0.28137147E-09. Largest element of DIIS residual : -0.81167928E-10. Perturbed Lambda equations converged in 18 iterations. Dominant contributions to perturbed wavefunction: 3 3 16 6 -0.0143995953 ABAB 3 3 6 16 -0.0143995953 ABAB 3 3 17 6 -0.0131065593 ABAB 3 3 6 17 -0.0131065593 ABAB 3 2 18 6 0.0086887800 ABAB 2 3 6 18 0.0086887800 ABAB 5 5 17 9 0.0086378916 ABAB 5 5 9 17 0.0086378916 ABAB 3 0 17 0 0.0077462231 AA 5 5 16 9 0.0073272586 ABAB 5 5 9 16 0.0073272586 ABAB 5 2 12 6 0.0070377686 ABAB 2 5 6 12 0.0070377686 ABAB 5 4 9 14 0.0068469565 ABAB 4 5 14 9 0.0068469565 ABAB 5 3 9 6 0.0068046735 ABAB 3 5 6 9 0.0068046735 ABAB 5 3 9 9 0.0063574325 ABAB 3 5 9 9 0.0063574325 ABAB 5 3 17 17 -0.0060918767 ABAB The DBOC first-order density matrix is being calculated (Symmetry block 3, perturbation 1) term 4.754092090413957E-003 final tnorm 0.890223832619220 norm contr. I: |<0|L dT/dx|0>|^2 0.000000000000000E+000 norm contr. II: <0|[nabla(1+L)e-T][nabla e^T]|0> 4.754092090413957E-003 total norm contribution 4.754092090413957E-003 oo -1.989197273300874E-002 vv 1.173944478997895E-002 vo 1.498574887888587E-002 Correlated perturbed 1-el contribution to DBOC 6.833220935856085E-003 cm**-1 SUM_I |dc_I/dx|^2 contribution to DBOC 1.506806893314187E-002 cm**-1 current total DBOC 627.719819758914 cm**-1 First-order density matrix is being calculated (Symmetry block 3, perturbation 1) There are 4 special pairs. Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.0 seconds. dD(ij)/dx contribution from formdxij 0.00000003990490 0.00001325744997 -0.00046175549961 0.00000003990490 0.00001325744997 -0.00046175549961 oo 9.739203549161910E-005 oo -9.739203549161909E-005 Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 15 iterations. U*G(pq,rs) contribution is being calculated (Symmetry block 3, perturbation 1) CCSD contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0174256879 0.0174256879 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 CCSD contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0067351121 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time (CPU/WALL): 0.08/ 0.08 seconds. --executable xsdcc finished with status 0 in 0.10 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xanti @GETMEM-I, Allocated 3814 MB of main memory. CCSD MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xanti finished with status 0 in 0.03 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xbcktrn @GETMEM-I, Allocated 3814 MB of main memory. CCSD MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xbcktrn finished with status 0 in 0.03 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xvdint @GETMEM-I, Allocated 3814 MB of main memory. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. magnet F F Evaluation of 2el integral derivatives Two-electron integral gradient ------------------------------ F #1 z 0.0000000000 H #2 z 0.0000000000 F #1 0.0000000000 -0.0003994593 0.0000000000 H #2 0.0000000000 0.0003994593 0.0000000000 Evaluation of 2e integral derivatives required 0.10 seconds. contribution to Hessian 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0003994593 0.0003994593 @CHECKOUT-I, Total execution time (CPU/WALL): 0.08/ 0.09 seconds. --executable xvdint finished with status 0 in 0.11 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xsdcc @GETMEM-I, Allocated 3814 MB of main memory. Vibrational frequencies and infrared intensities are calculated at the CCSD level within the harmonic approximation. Perturbed canonical orbitals are used. CPHF coefficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: RHF transformation Transformation of DIIIJ integral derivatives. 3 passes through the AO integral derivative file were needed. 1888 AO integral derivatives were read from file DIIIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 9703 MO integral derivatives were written to file DERINT. Transformation of DIIJK integral derivatives. 2 passes through the AO integral derivative file were needed. 442 AO integral derivatives were read from file DIIJK. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 2530 MO integral derivatives were written to file DERINT. Transformation of DIJIK integral derivatives. 2 passes through the AO integral derivative file were needed. 724 AO integral derivatives were read from file DIJIK. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 5060 MO integral derivatives were written to file DERINT. MO basis integral derivatives are being calculated (Symmetry block 3, perturbation 2) First derivative of the wavefunction is calculated (Symmetry block 3, perturbation 2) Frozen core orbitals in analytic derivative calculation Resorts of perturbed amplitudes and integrals required 0.0 seconds. Construction of required 0.0 seconds. Starting iterative solution of the perturbed CC equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 100. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : 0.98409391E-02. Largest element of DIIS residual : 0.98409391E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : 0.11051633E-02. Largest element of DIIS residual : 0.12210302E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : 0.24740133E-02. Largest element of DIIS residual : 0.18258811E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : 0.18163361E-02. Largest element of DIIS residual : 0.83242438E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : 0.77118181E-03. Largest element of DIIS residual : 0.22892173E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : 0.21094164E-03. Largest element of DIIS residual : -0.48024688E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : 0.34117507E-04. Largest element of DIIS residual : -0.16917194E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : -0.12114333E-04. Largest element of DIIS residual : -0.24034992E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : -0.12175200E-05. Largest element of DIIS residual : -0.13798147E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : -0.38799858E-06. Largest element of DIIS residual : -0.17742209E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : -0.17793355E-06. Largest element of DIIS residual : -0.13172157E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : -0.46600920E-07. Largest element of DIIS residual : -0.43928751E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : -0.32074389E-07. Largest element of DIIS residual : -0.24037594E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : -0.18927761E-07. Largest element of DIIS residual : -0.63864015E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : -0.32805838E-08. Largest element of DIIS residual : 0.84703705E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : -0.15857676E-08. Largest element of DIIS residual : -0.13978160E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : -0.84420562E-09. Largest element of DIIS residual : -0.15949461E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 18 iterations: Largest element of residual vector : -0.22725661E-09. Largest element of DIIS residual : 0.39178451E-10. Perturbed amplitude equations converged in 18 iterations. Dominant contributions to perturbed wavefunction: 3 3 16 6 0.0158849253 ABAB 3 3 6 16 0.0158849253 ABAB 3 3 17 6 0.0138213065 ABAB 3 3 6 17 0.0138213065 ABAB 3 2 18 6 -0.0094998737 ABAB 2 3 6 18 -0.0094998737 ABAB 5 5 17 9 -0.0085129826 ABAB 5 5 9 17 -0.0085129826 ABAB 3 0 17 0 -0.0084848243 AA 5 2 12 6 -0.0079316528 ABAB 2 5 6 12 -0.0079316528 ABAB 5 3 9 6 -0.0075254067 ABAB 3 5 6 9 -0.0075254067 ABAB 5 5 16 9 -0.0072128449 ABAB 5 5 9 16 -0.0072128449 ABAB 5 3 9 9 -0.0067689251 ABAB 3 5 9 9 -0.0067689251 ABAB 5 4 9 14 -0.0067012307 ABAB 4 5 14 9 -0.0067012307 ABAB 5 3 17 17 0.0064722363 ABAB norm of converged amps 6.483301080084421E-002 Frozen core orbitals in analytic derivative calculation Starting iterative solution of the perturbed Lambda equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 100. Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : 0.85445194E-02. Largest element of DIIS residual : 0.85445194E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : -0.90868708E-03. Largest element of DIIS residual : -0.90805474E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : 0.20127890E-02. Largest element of DIIS residual : 0.14243397E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : 0.14360800E-02. Largest element of DIIS residual : 0.74499087E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : 0.72382014E-03. Largest element of DIIS residual : 0.22430640E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : 0.19484998E-03. Largest element of DIIS residual : -0.51859200E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : 0.36641106E-04. Largest element of DIIS residual : -0.19136726E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : -0.10592881E-04. Largest element of DIIS residual : -0.30164654E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : -0.14858307E-05. Largest element of DIIS residual : -0.15586854E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : -0.45842831E-06. Largest element of DIIS residual : -0.20909219E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : -0.19695630E-06. Largest element of DIIS residual : -0.15301119E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : -0.68658185E-07. Largest element of DIIS residual : -0.51944786E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : -0.43795104E-07. Largest element of DIIS residual : -0.31742677E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : -0.29521269E-07. Largest element of DIIS residual : 0.12318287E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : -0.79604735E-08. Largest element of DIIS residual : 0.25548947E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : -0.35313576E-08. Largest element of DIIS residual : -0.23224324E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : -0.11808232E-08. Largest element of DIIS residual : -0.24904934E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 18 iterations: Largest element of residual vector : -0.28137147E-09. Largest element of DIIS residual : 0.81167928E-10. Perturbed Lambda equations converged in 18 iterations. Dominant contributions to perturbed wavefunction: 3 3 16 6 0.0143995953 ABAB 3 3 6 16 0.0143995953 ABAB 3 3 17 6 0.0131065593 ABAB 3 3 6 17 0.0131065593 ABAB 3 2 18 6 -0.0086887800 ABAB 2 3 6 18 -0.0086887800 ABAB 5 5 17 9 -0.0086378916 ABAB 5 5 9 17 -0.0086378916 ABAB 3 0 17 0 -0.0077462231 AA 5 5 16 9 -0.0073272586 ABAB 5 5 9 16 -0.0073272586 ABAB 5 2 12 6 -0.0070377686 ABAB 2 5 6 12 -0.0070377686 ABAB 5 4 9 14 -0.0068469565 ABAB 4 5 14 9 -0.0068469565 ABAB 5 3 9 6 -0.0068046735 ABAB 3 5 6 9 -0.0068046735 ABAB 5 3 9 9 -0.0063574325 ABAB 3 5 9 9 -0.0063574325 ABAB 5 3 17 17 0.0060918767 ABAB The DBOC first-order density matrix is being calculated (Symmetry block 3, perturbation 2) term 4.754092090413977E-003 final tnorm 0.890223832619220 norm contr. I: |<0|L dT/dx|0>|^2 0.000000000000000E+000 norm contr. II: <0|[nabla(1+L)e-T][nabla e^T]|0> 4.754092090413977E-003 total norm contribution 4.754092090413977E-003 oo -0.383475569278265 vv 0.130586077052312 vo 0.220649520573598 Correlated perturbed 1-el contribution to DBOC -3.223997165235501E-002 cm**-1 SUM_I |dc_I/dx|^2 contribution to DBOC 0.284127415425366 cm**-1 The total diagonal Born-Oppenheimer correction (DBOC) is: 0.0028612496 a.u. The total diagonal Born-Oppenheimer correction (DBOC) is: 627.971707 cm-1 Total CC energy including DBOC -100.088024804688 First-order density matrix is being calculated (Symmetry block 3, perturbation 2) There are 4 special pairs. Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.0 seconds. dD(ij)/dx contribution from formdxij -0.00000003990490 -0.00001325744997 0.00046175549961 -0.00000003990490 -0.00001325744997 0.00046175549961 oo -9.739203549162555E-005 oo 9.739203549162555E-005 Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 15 iterations. U*G(pq,rs) contribution is being calculated (Symmetry block 3, perturbation 2) CCSD contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0174256879 -0.0174256879 CCSD contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0067351121 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time (CPU/WALL): 0.08/ 0.08 seconds. --executable xsdcc finished with status 0 in 0.10 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xanti @GETMEM-I, Allocated 3814 MB of main memory. CCSD MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xanti finished with status 0 in 0.03 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xbcktrn @GETMEM-I, Allocated 3814 MB of main memory. CCSD MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xbcktrn finished with status 0 in 0.03 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xvdint @GETMEM-I, Allocated 3814 MB of main memory. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. magnet F F Evaluation of 2el integral derivatives Two-electron integral gradient ------------------------------ F #1 z 0.0000000000 H #2 z 0.0000000000 F #1 0.0000000000 0.0003994593 0.0000000000 H #2 0.0000000000 -0.0003994593 0.0000000000 Evaluation of 2e integral derivatives required 0.09 seconds. contribution to Hessian 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0003994593 -0.0003994593 @CHECKOUT-I, Total execution time (CPU/WALL): 0.08/ 0.08 seconds. --executable xvdint finished with status 0 in 0.10 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xanti @GETMEM-I, Allocated 3814 MB of main memory. CCSD MO gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xanti finished with status 0 in 0.03 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xbcktrn @GETMEM-I, Allocated 3814 MB of main memory. CCSD MO gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xbcktrn finished with status 0 in 0.03 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xvdint @GETMEM-I, Allocated 3814 MB of main memory. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. magnet F F Kinetic energy integral gradient -------------------------------- F #1 z -0.1324475791 H #2 z 0.1324475791 F #1 0.0000000000 0.0000000000 -0.1324475791 H #2 0.0000000000 0.0000000000 0.1324475791 Nuclear attraction integral gradient ------------------------------------ F #1 z 2.8676155657 H #2 z -2.8676155657 F #1 0.0000000000 0.0000000000 2.8676155657 H #2 0.0000000000 0.0000000000 -2.8676155657 Reorthonormalization gradient ----------------------------- F #1 z 0.0000000000 H #2 z 0.0000000000 F #1 0.0000000000 0.0000000000 0.0000000000 H #2 0.0000000000 0.0000000000 0.0000000000 Kinetic energy integral Hessian ------------------------------- Symmetry 1 F #1 z H #2 z F #1 z 0.187408 H #2 z -0.187408 0.187408 Symmetry 2 F #1 x H #2 x F #1 x -0.052490 H #2 x 0.052490 -0.052490 Symmetry 3 F #1 y H #2 y F #1 y -0.052490 H #2 y 0.052490 -0.052490 F #1 x F #1 y F #1 z H #2 x H #2 y H #2 z F #1 x -0.052490 F #1 y 0.000000 -0.052490 F #1 z 0.000000 0.000000 0.187408 H #2 x 0.052490 0.000000 0.000000 -0.052490 H #2 y 0.000000 0.052490 0.000000 0.000000 -0.052490 H #2 z 0.000000 0.000000 -0.187408 0.000000 0.000000 0.187408 Nuclear attraction integral Hessian ----------------------------------- Symmetry 1 F #1 z H #2 z F #1 z -1.944033 H #2 z 1.944033 -1.944033 Symmetry 2 F #1 x H #2 x F #1 x 1.161676 H #2 x -1.161676 1.161676 Symmetry 3 F #1 y H #2 y F #1 y 1.161676 H #2 y -1.161676 1.161676 F #1 x F #1 y F #1 z H #2 x H #2 y H #2 z F #1 x 1.161676 F #1 y 0.000000 1.161676 F #1 z 0.000000 0.000000 -1.944033 H #2 x -1.161676 0.000000 0.000000 1.161676 H #2 y 0.000000 -1.161676 0.000000 0.000000 1.161676 H #2 z 0.000000 0.000000 1.944033 0.000000 0.000000 -1.944033 Highest order reorthonormalization Hessian ------------------------------------------ Symmetry 1 F #1 z H #2 z F #1 z 0.000000 H #2 z 0.000000 0.000000 Symmetry 2 F #1 x H #2 x F #1 x 0.000000 H #2 x 0.000000 0.000000 Symmetry 3 F #1 y H #2 y F #1 y 0.000000 H #2 y 0.000000 0.000000 F #1 x F #1 y F #1 z H #2 x H #2 y H #2 z Electronic contributions to dipole moment ----------------------------------------- au Debye z 0.71610367 1.82015429 Conversion factor used: 1 a.u. = 2.54174691 Debye Electronic contributions to static part of dipole moment derivatives -------------------------------------------------------------------- Total dipole moment derivatives ------------------------------- Symmetry 1 Ez F #1 z -9.66064043 H #2 z -0.33935957 Symmetry 2 Ex F #1 x -9.26342043 H #2 x -0.73657957 Symmetry 3 Ey F #1 y -9.26342043 H #2 y -0.73657957 Ex Ey Ez F #1 x -9.263420 0.000000 0.000000 F #1 y 0.000000 -9.263420 0.000000 F #1 z 0.000000 0.000000 -9.660640 H #2 x -0.736580 0.000000 0.000000 H #2 y 0.000000 -0.736580 0.000000 H #2 z 0.000000 0.000000 -0.339360 Evaluation of 1e integral derivatives required 0.08 seconds. Evaluation of 2el integral derivatives Two-electron integral gradient ------------------------------ F #1 z -1.5098942561 H #2 z 1.5098942561 F #1 0.0000000000 0.0000000000 -1.5098942561 H #2 0.0000000000 0.0000000000 1.5098942561 Evaluation of 2e integral derivatives required 0.03 seconds. Molecular gradient ------------------ F #1 z 0.2252737306 H #2 z -0.2252737306 F #1 0.0000000000 0.0000000000 0.2252737306 H #2 0.0000000000 0.0000000000 -0.2252737306 Molecular gradient norm 0.319E+00 Molecular hessian ----------------- Symmetry 1 F #1 z H #2 z F #1 z -0.119670 H #2 z 0.119670 -0.119670 Symmetry 2 F #1 x H #2 x F #1 x 0.074420 H #2 x -0.074420 0.074420 Symmetry 3 F #1 y H #2 y F #1 y 0.074420 H #2 y -0.074420 0.074420 F #1 x F #1 y F #1 z H #2 x H #2 y H #2 z F #1 x 0.074420 F #1 y 0.000000 0.074420 F #1 z 0.000000 0.000000 -0.119670 H #2 x -0.074420 0.000000 0.000000 0.074420 H #2 y 0.000000 -0.074420 0.000000 0.000000 0.074420 H #2 z 0.000000 0.000000 0.119670 0.000000 0.000000 -0.119670 Total dipole moment ------------------- au Debye z -0.77262941 -1.96382841 Conversion factor used: 1 a.u. = 2.54174691 Debye Total dipole moment derivatives ------------------------------- Symmetry 1 Ez F #1 z 0.29631965 H #2 z -0.29631965 Symmetry 2 Ex F #1 x -0.25735812 H #2 x 0.25735812 Symmetry 3 Ey F #1 y -0.25735812 H #2 y 0.25735812 Ex Ey Ez F #1 x -0.257358 0.000000 0.000000 F #1 y 0.000000 -0.257358 0.000000 F #1 z 0.000000 0.000000 0.296320 H #2 x 0.257358 0.000000 0.000000 H #2 y 0.000000 0.257358 0.000000 H #2 z 0.000000 0.000000 -0.296320 @CHECKOUT-I, Total execution time (CPU/WALL): 0.10/ 0.10 seconds. --executable xvdint finished with status 0 in 0.13 seconds (walltime). --invoking executable-- /home/lorenzo/cfour-2.1/bin/xjoda @GTFLGS-I, Hessian will be transformed to curvilinear coordinates. @GTFLGS-I, Hessian will be transformed to curvilinear coordinates. igrd and ihes are 0 1 gradient from JOBARC 0.000000000000000 0.000000000000000 0.225273730554803 0.000000000000000 0.000000000000000 -0.225273730554803 @PROJFCM-I, Projecting force constant matrix onto totally symmetric subspace. Largest difference between matrix elements of symmetrized and unsymmetrized FCM : -0.7216449660E-15. Summary of diagonal Born-Oppenheimer correction at the correlated level The total diagonal Born-Oppenheimer correction (DBOC) is: 0.0028612496 a.u. The total diagonal Born-Oppenheimer correction (DBOC) is: 627.971707 cm-1 The total diagonal Born-Oppenheimer correction (DBOC) is: 7.512 kJ/mole hellooooooo readis is F @CHECKOUT-I, Total execution time (CPU/WALL): 0.01/ 0.01 seconds. --executable xjoda finished with status 0 in 0.03 seconds (walltime). The final electronic energy is -100.088024804687691 a.u. This computation required 2.50 seconds (walltime).