References

  • [1] Note: PCMSolver, an open-source library for the polarizable continuum model electrostatic problem, written by R. Di Remigio, L. Frediani and contributors (see http://pcmsolver.readthedocs.io/) External Links: Document Cited by: item <solvent>, item pcm, item pcm_*, item 6, item 3, item 6, §7.2.
  • [2] R. Ahlrichs (2004) Efficient evaluation of three-center two-electron integrals over Gaussian functions. Phys. Chem. Chem. Phys. 6, pp. 5119. Cited by: item 1..
  • [3] D. Andrae, U. Häußermann, M. Dolg, H. Stoll, and H. Preuß (1990) Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chem. Acc. 77, pp. 123. Cited by: 2nd item.
  • [4] F. Aquilante, T. B. Pedersen, A. M. Sánchez de Merás, and H. Koch (2006) Fast noniterative orbital localization for large molecules. J. Chem. Phys. 125, pp. 174101. Cited by: item cholesky, item cholesky.
  • [5] Basis Set Exchange, https://www.basissetexchange.org/.. Cited by: item 2., item 2., §6.10.
  • [6] A. D. Becke (1988) A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 88, pp. 2547. Cited by: item GC, item agrid, item grid.
  • [7] J. S. Binkley, J. A. Pople, and W. J. Hehre (1980) Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc. 102, pp. 939. Cited by: 2nd item.
  • [8] Y. J. Bomble, J. F. Stanton, M. Kállay, and J. Gauss (2005) Coupled cluster methods including non-iterative approximate quadruple excitation corrections. J. Chem. Phys. 123, pp. 054101. Cited by: item 11, p3.
  • [9] J. W. Boughton and P. Pulay (1993) Comparison of the Boys and Pipek–Mezey localizations in the local correlation approach and automatic virtual basis selection. J. Comput. Chem. 14, pp. 736. Cited by: item bpcompo, item oniom, item bpcompv, item bpedo, item bpedv, item bp_subsyso, item bp_subsysv, item bppdo, item bppdv, item domrad.
  • [10] O. Christiansen, H. Koch, and P. Jørgensen (1995) The second-order approximate coupled cluster singles and doubles model CC2. Chem. Phys. Lett. 243, pp. 409. Cited by: item, item, item.
  • [11] T. Clark, J. Chandrasekhar, G.W. Spitznagel, and P. v. R. Schleyer (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F. J. Comput. Chem. 4, pp. 294. Cited by: 2nd item.
  • [12] D. Claudino and N. J. Mayhall (2019) Automatic partition of orbital spaces based on singular value decomposition in the context of embedding theories. J. Chem. Theory Comput. 15, pp. 1053. External Links: Document Cited by: item spade, item Huzinaga.
  • [13] S. Das, M. Kállay, and D. Mukherjee (2010) Inclusion of selected higher excitations involving active orbitals in the state-specific multi-reference coupled-cluster theory. J. Chem. Phys. 133, pp. 234110. Cited by: p3.
  • [14] S. Das, M. Kállay, and D. Mukherjee (2012) Superior performance of Mukherjee’s state-specific multi-reference coupled-cluster theory at the singles and doubles truncation scheme with localized active orbitals. Chem. Phys. 392, pp. 83. Cited by: p3.
  • [15] S. Das, D. Mukherjee, and M. Kállay (2010) Full implementation and benchmark studies of Mukherjee’s state-specific multi-reference coupled-cluster ansatz. J. Chem. Phys. 132, pp. 074103. Cited by: p3.
  • [16] R. Di Remigio, K. Mozgawa, H. Cao, V. Weijo, and L. Frediani (2016) A polarizable continuum model for molecules at spherical diffuse interfaces. J. Chem. Phys. 144, pp. 124103. External Links: Document Cited by: item pcm, item pcm_*, item 6.
  • [17] R. Di Remigio, A. H. Steindal, K. Mozgawa, V. Weijo, H. Cao, and L. Frediani (2019) PCMSolver: An open-source library for solvation modeling. Int. J. Quantum Chem. 119, pp. e25685. External Links: Document Cited by: item pcm, item pcm_*, item 6, item 3, §7.2.
  • [18] J. D. Dill and J. A. Pople (1975) Self-consistent molecular orbital methods. XV. Extended Gaussian-type basis sets for lithium, beryllium, and boron. J. Chem. Phys. 62, pp. 2921. Cited by: 2nd item.
  • [19] T. H. Dunning Jr. and P. J. Hay (1977) Gaussian basis sets for molecular calculations. In Methods of Electronic Structure Theory, H. F. Schaefer III (Ed.), Vol. 2. Cited by: 6th item.
  • [20] T. H. Dunning Jr., K. A. Peterson, and A. K. Wilson (2001) Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited. J. Chem. Phys. 114, pp. 9244. Cited by: 1st item.
  • [21] T. H. Dunning Jr. (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, pp. 1007. Cited by: 1st item.
  • [22] D. J. Feller (1996) The role of databases in support of computational chemistry calculations. J. Comput. Chem. 17, pp. 1571. Cited by: item 2., item 2., §6.10.
  • [23] D. Figgen, K. A. Peterson, M. Dolg, and H. Stoll (2009) Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf-Pt. J. Chem. Phys. 130, pp. 164108. Cited by: 4th item, 3rd item.
  • [24] D. Figgen, G. Rauhut, M. Dolg, and H. Stoll (2005) Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data. Chem. Phys. 311, pp. 227. Cited by: 3rd item.
  • [25] N. Flocke (2009) On the use of shifted Jacobi polynomials in accurate evaluation of roots and weights of Rys polynomials. J. Chem. Phys. 131, pp. 064107. Cited by: item rys.
  • [26] T. Földes, Á. Madarász, Á. Révész, Z. Dobi, S. Varga, A. Hamza, P. R. Nagy, P. M. Pihko, and I. Pápai (2017) Stereocontrol in diphenylprolinol silyl ether catalyzed michael additions: steric shielding or Curtin–Hammett scenario?. J. Am. Chem. Soc. 139, pp. 17052. Cited by: §6.9.
  • [27] J. M. Foster and S. F. Boys (1960) Canonical configurational interaction procedure. Rev. Mod. Phys. 32, pp. 300. Cited by: item boys.
  • [28] M. M. Francl, W. J. Petro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, and J. A. Pople (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 77, pp. 3654. Cited by: 2nd item.
  • [29] Functionals were obtained from the Density Functional Repository as developed and distributed by the Quantum Chemistry Group, CCLRC Daresbury Laboratory, Daresbury, Cheshire, WA4 4AD United Kingdom. Contact Huub van Dam (h.j.j.vandam@dl.ac.uk) or Paul Sherwood for further information.. Cited by: item 1..
  • [30] A. J. Garza, I. W. Bulik, T. M. Henderson, and G. E. Scuseria (2015) Range separated hybrids of pair coupled cluster doubles and density functionals. Phys. Chem. Chem. Phys. 17, pp. 22412. External Links: Document, Link Cited by: item rsdh, item 9..
  • [31] J. Gauss, M. Kállay, and F. Neese (2009) Calculation of electronic g-tensors using coupled-cluster theory. J. Phys. Chem. A 113, pp. 11541. Cited by: item 1, §6.3, p3.
  • [32] J. Gauss, K. Ruud, and M. Kállay (2007) Gauge-origin independent calculation of magnetizabilities and rotational g tensors at the coupled-cluster level. J. Chem. Phys. 127, pp. 074101. Cited by: item 1, §6.3, p3.
  • [33] J. Gauss, A. Tajti, M. Kállay, J. F. Stanton, and P. G. Szalay (2006) Analytic calculation of the diagonal Born–Oppenheimer correction within configuration-interaction and coupled-cluster theory. J. Chem. Phys. 125, pp. 144111. Cited by: item 1, item 2, item 3, item 4, p3.
  • [34] M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, and W. J. Hehre (1983) Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J. Am. Chem. Soc. 104, pp. 2797. Cited by: 2nd item.
  • [35] A. Götz, M. A. Clack, and R. C. Walker (2014) An extensible interface for QM/MM molecular dynamics simulations with Amber. J. Comput. Chem. 35, pp. 95. Cited by: §5.5.
  • [36] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, pp. 154104. Cited by: item 2., item edisp, item edisp_embed.
  • [37] S. Grimme, S. Ehrlich, and L. Goerigk (2011) Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, pp. 1456. Cited by: item 2., item Note:, item edisp, item Note:, item edisp_embed.
  • [38] S. Grimme and F. Neese (2007) Double-hybrid density functional theory for excited electronic states of molecules. J. Chem. Phys. 127, pp. 154116. Cited by: item 1..
  • [39] S. Grimme (2003) Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J. Chem. Phys. 118, pp. 9095. Cited by: item scsps, item scspt, item.
  • [40] A. Grüneis, M. Marsman, J. Harl, L. Schimka, and G. Kresse (2009) Making the random phase approximation to electronic correlation accurate. J. Chem. Phys. 131, pp. 154115. External Links: Link, Document Cited by: item.
  • [41] L. Gyevi-Nagy, M. Kállay, and P. R. Nagy (2020) Integral-direct and parallel implementation of the CCSD(T) method: Algorithmic developments and large-scale applications. J. Chem. Theory Comput. 16, pp. 366. Cited by: item 3., item, item disk, item dfdirect, p3.
  • [42] P. C. Hariharan and J. A. Pople (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chem. Acc. 28, pp. 213. Cited by: 2nd item.
  • [43] C. Hättig and F. Weigend (2000) CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. J. Chem. Phys. 113, pp. 5154. Cited by: item, item.
  • [44] P. J. Hay and W. R. Wadt (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, pp. 299. Cited by: 1st item, 1st item.
  • [45] P. J. Hay and W. R. Wadt (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, pp. 270. Cited by: 1st item, 1st item.
  • [46] M. Head-Gordon, R. J. Rico, M. Oumi, and T. J. Lee (1994) A doubles correction to electronic excited states from configuration interaction in the space of single substitutions. Chem. Phys. Lett. 219, pp. 21. Cited by: item, item.
  • [47] B. Hégely, F. Bogár, G. G. Ferenczy, and M. Kállay (2015) A QM/MM program for calculations with frozen localized orbitals based on the Huzinaga equation. Theor. Chem. Acc. 134, pp. 132. Cited by: §5.5, p3.
  • [48] B. Hégely, P. R. Nagy, G. G. Ferenczy, and M. Kállay (2016) Exact density functional and wave function embedding schemes based on orbital localization. J. Chem. Phys. 145, pp. 064107. Cited by: item 1., item Huzinaga, §5.5, item 19, §6.9, p3.
  • [49] B. Hégely, P. R. Nagy, and M. Kállay (2018) Dual basis set approach for density functional and wave function embedding schemes. J. Chem. Theory Comput. 14, pp. 4600. Cited by: item, item, item dual, item Huzinaga, §6.9, §6.9, p3.
  • [50] W. J. Hehre, R. Ditchfield, and J. A. Pople (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, pp. 2257. Cited by: 2nd item.
  • [51] T. Helgaker, P. Jørgensen, and J. Olsen (2000) Molecular electronic structure theory. Wiley, Chichester. Cited by: item AugHess, item AugHessL.
  • [52] A. Hellweg, S. A. Grün, and C. Hättig (2008) Benchmarking the performance of spin-component scaled CC2 in ground and electronically excited states. Phys. Chem. Chem. Phys. 10, pp. 4119. External Links: Document, Link Cited by: item Note:, item Note:, item, item.
  • [53] A. Hellweg and D. Rappoport (2015) Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations. Phys. Chem. Chem. Phys. 17, pp. 1010. Cited by: 8th item, 5th item.
  • [54] A. Heßelmann (2012) Random-phase-approximation correlation method including exchange interactions. Phys. Rev. A 85, pp. 012517. Cited by: item drpa, item, item dendec, item fit.
  • [55] G. Hetzer, P. Pulay, and H. Werner (1998) Multipole approximation of distant pair energies in local MP2 calculations. Chem. Phys. Lett. 290, pp. 143. Cited by: item wpairtol.
  • [56] Https://www.tddft.org/programs/libxc/. Cited by: item <Libxc identifier>, 2nd item, item 1., item 5, item 3a, §7.2.
  • [57] S. Humbel, S. Sieber, and K. Morokuma (1996) The IMOMO method: Integration of different levels of molecular orbital approximations for geometry optimization of large systems: Test for n-butane conformation and SN2 reaction: RCl+Cl. J. Chem. Phys. 105, pp. 1959. Cited by: item oniom, item 20, item 14.
  • [58] B. Jansík, S. Høst, K. Kristensen, and P. Jørgensen (2011) Local orbitals by minimizing powers of the orbital variance. J. Chem. Phys. 134, pp. 194104. Cited by: item gboys<m>, item gboys<m>.
  • [59] Y. Jung, R. C. Lochan, A. D. Dutoi, and M. Head-Gordon (2004) Scaled opposite-spin second order Møller–Plesset correlation energy: An economical electronic structure method. J. Chem. Phys. 121, pp. 9793. Cited by: item, item.
  • [60] M. Kállay, J. Gauss, and P. G. Szalay (2003) Analytic first derivatives for general coupled-cluster and configuration interaction models. J. Chem. Phys. 119, pp. 2991. Cited by: item maxex, item dens, item 1, item 2, item 1, item 2, item 3, item 4, item 1, item 2, item 3, item 4, item 10, item 12, item 13, item 7, item 8, item 9, item 1, item 2, item 3, item 4, p3.
  • [61] M. Kállay and J. Gauss (2004) Analytic second derivatives for general coupled-cluster and configuration interaction models. J. Chem. Phys. 120, pp. 6841. Cited by: item dens, item 1, item 2, item 1, item 2, item 3, item 4, item 1, item 2, item 3, item 4, §6.3, p3.
  • [62] M. Kállay and J. Gauss (2004) Calculation of excited-state properties using general coupled-cluster and configuration-interaction models. J. Chem. Phys. 121, pp. 9257. Cited by: item dens, item 17, item 18, item 1, item 2, item 3, item 4, item 12, item 13, p3.
  • [63] M. Kállay and J. Gauss (2005) Approximate treatment of higher excitations in coupled-cluster theory. J. Chem. Phys. 123, pp. 214105. Cited by: item, item, item, item, item, item, item, item 11, p3.
  • [64] M. Kállay and J. Gauss (2006) Calculation of frequency-dependent polarizabilities using general coupled-cluster models. J. Mol. Struct. (Theochem) 768, pp. 71. Cited by: item ptfreq, item dens, item 1, item 4, §6.3, p3.
  • [65] M. Kállay and J. Gauss (2008) Approximate treatment of higher excitations in coupled-cluster theory. II. Extension to general single-determinant reference functions and improved approaches for the canonical Hartree–Fock case. J. Chem. Phys. 129, pp. 144101. Cited by: item, item, item, item, item 11, item 4, §6.1, p3.
  • [66] M. Kállay, P. R. Nagy, D. Mester, Z. Rolik, G. Samu, J. Csontos, J. Csóka, P. B. Szabó, L. Gyevi-Nagy, B. Hégely, I. Ladjánszki, L. Szegedy, B. Ladóczki, K. Petrov, M. Farkas, P. D. Mezei, and Á. Ganyecz (2020) The MRCC program system: Accurate quantum chemistry from water to proteins. J. Chem. Phys. 152, pp. 074107. Cited by: §1, §6.9, p3.
  • [67] M. Kállay, H. S. Nataraj, B. K. Sahoo, B. P. Das, and L. Visscher (2011) Relativistic general-order coupled-cluster method for high-precision calculations: application to the Al+ atomic clock. Phys. Rev. A 83, pp. 030503(R). Cited by: §5.3, item 3, §6.8, p3.
  • [68] M. Kállay and P. R. Surján (2000) Computing coupled-cluster wave functions with arbitrary excitations. J. Chem. Phys. 113, pp. 1359. Cited by: item olsen.
  • [69] M. Kállay and P. R. Surján (2001) Higher excitations in coupled-cluster theory. J. Chem. Phys. 115, pp. 2945. Cited by: item nsing, item, item, item olsen, item 10, item 9, item 1, item 1, item 2, item 1, item 3, item 7, item 8, item 1, item 2, p3.
  • [70] M. Kállay, P. G. Szalay, and P. R. Surján (2002) A general state-selective coupled-cluster algorithm. J. Chem. Phys. 117, pp. 980. Cited by: item maxex, item nacto, item, item, item 15, item 16, item 2, item 3, item 4, item 2, item 4, item 10, item 9, item 3, item 4, p3.
  • [71] M. Kállay (2014) A systematic way for the cost reduction of density fitting methods. J. Chem. Phys. 141, pp. 244113. Cited by: item drpa, item nafalg, item naf_cor, item naf_scf, item naftyp, item 3, item 5, item 6, item 2, item 4, item 5, §6.9, p3.
  • [72] M. Kállay (2015) Linear-scaling implementation of the direct random-phase approximation. J. Chem. Phys. 142, pp. 204105. Cited by: item spairtol, item wpairtol, item dendec, item nofit, item drpaalg, item 2., item lcorthr, item 2015, item localcc, item 6, item 3, §6.9, §6.9, p3.
  • [73] M. Kaupp, P. v. R. Schleyer, H. Stoll, and H. Preuss (1991) Pseudopotential approaches to Ca, Sr, and Ba hydrides. Why are some alkaline earth MX2 compounds bent?. J. Chem. Phys. 94, pp. 1360. Cited by: 2nd item.
  • [74] R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, pp. 6796. Cited by: 1st item.
  • [75] H. F. King and M. Dupuis (1976) Numerical integration using Rys polynomials. J. Comput. Phys. 21, pp. 144. Cited by: item rys.
  • [76] G. Knizia (2013) Intrinsic atomic orbitals: An unbiased bridge between quantum theory and chemical concepts. J. Chem. Theory Comput. 9, pp. 4834. Cited by: item IBO, item IAO.
  • [77] M. Krack and A. M. Köster (1998) An adaptive numerical integrator for molecular integrals. J. Chem. Phys. 108, pp. 3226. Cited by: item GC, item Note:, item auto.
  • [78] R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, pp. 650. Cited by: 2nd item.
  • [79] T. Leininger, A. Nicklass, W. Küchle, H. Stoll, M. Dolg, and A. Bergner (1996) The accuracy of the pseudopotential approximation: non-frozen-core effects for spectroscopic constants of alkali fluorides XF (X = K, Rb, Cs). Chem. Phys. Lett. 255, pp. 274. Cited by: 2nd item.
  • [80] S. Li, J. Ma, and Y. Jiang (2002) Linear scaling local correlation approach for solving the coupled cluster equations of large systems. J. Comput. Chem. 23, pp. 237. Cited by: §6.9.
  • [81] W. Liang and M. Head-Gordon (2004) Approaching the basis set limit in density functional theory calculations using dual basis sets without diagonalization. J. Phys. Chem. A 108, pp. 3206. Cited by: §6.9.
  • [82] R. Lindh, U. Ryu, and B. Liu (1991) The reduced multiplication scheme of the Rys quadrature and new recurrence relations for auxiliary function based two-electron integral evaluation. J. Chem. Phys. 95, pp. 5889. Cited by: item os, item rys.
  • [83] P. Loos, B. Pradines, A. Scemama, J. Toulouse, and E. Giner (2019) A density-based basis-set correction for wave function theory. J. Phys. Chem. Lett. 10, pp. 2931. External Links: Document, Link Cited by: item denscorr, item 10..
  • [84] F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III (2012) A simple, exact density-functional-theory embedding scheme. J. Chem. Theory Comput. 8, pp. 2564. Cited by: item project, §5.5.
  • [85] M. A. L. Marques, M. J. T. Oliveira, and T. Burnus (2012) Libxc: A library of exchange and correlation functionals for density functional theory. Comput. Phys. Commun. 183, pp. 2272. Cited by: item 1., §7.2.
  • [86] F. Maseras and K. Morokuma (1995) IMOMM – A new integrated ab-initio plus molecular mechanics geometry optimization scheme of equilibrium structures and transition-states. J. Comput. Chem. 16, pp. 1170. Cited by: item oniom, §5.5, §5.6, item 20, item 14.
  • [87] I. Mayer (1983) Charge, bond order and valence in the ab initio SCF theory. Chem. Phys. Lett. 97, pp. 270. Cited by: item Mulli.
  • [88] A. D. McLean and G. S. Chandler (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18. J. Chem. Phys. 72, pp. 5639. Cited by: 2nd item.
  • [89] D. Mester, J. Csontos, and M. Kállay (2015) Unconventional bond functions for quantum chemical calculations. Theor. Chem. Acc. 134, pp. 74. Cited by: item bfbasis, §6.10, p3.
  • [90] D. Mester and M. Kállay (2019) Combined density functional and algebraic-diagrammatic construction approach for accurate excitation energies and transition moments. J. Chem. Theory Comput. 15, pp. 4440. Cited by: item, item, item, item Note:, item 2., item dhexc, item 4, item 8, §6.6, §6.9, p3.
  • [91] D. Mester and M. Kállay (2019) Reduced-scaling approach for configuration interaction singles and time-dependent density functional theory calculations using hybrid functionals. J. Chem. Theory Comput. 15, pp. 1690. Cited by: item redcost_tddft, item, item 4, §6.6, §6.9, p3.
  • [92] D. Mester, P. Nagy, and M. Kállay (2019) Reduced-scaling correlation methods for the excited states of large molecules: Implementation and benchmarks for the second-order algebraic-diagrammatic construction approach. J. Chem. Theory Comput. 15, pp. 6111. Cited by: item nafdens, item tlmo, item tpao, item 8, p3.
  • [93] D. Mester, P. R. Nagy, and M. Kállay (2017) Reduced-cost linear-response CC2 method based on natural orbitals and natural auxiliary functions. J. Chem. Phys. 146, pp. 194102. Cited by: item Default:, item Default:, item 1., item redcost_exc, item, item, item, item, item, item lnoepso, item lnoepsv, item 8, §6.6, §6.9, §6.9, p3.
  • [94] D. Mester, P. R. Nagy, and M. Kállay (2018) Reduced-cost second-order algebraic-diagrammatic construction method for excitation energies and transition moments. J. Chem. Phys. 148, pp. 094111. External Links: Document Cited by: item Default:, item Default:, item 1., item cust, item 1., item redcost_exc, item, item, item, item, item, item lnoepso, item lnoepsv, item 8, §6.6, §6.9, p3.
  • [95] B. Metz, M. Schweizer, H. Stoll, M. Dolg, and W. Liu (2000) A small-core multiconfiguration Dirac–Hartree–Fock-adjusted pseudopotential for Tl – application to TlX (X = F, Cl, Br, I). Theor. Chem. Acc. 104, pp. 22. Cited by: 3rd item.
  • [96] B. Metz, H. Stoll, and M. Dolg (2000) Small-core multiconfiguration-Dirac–Hartree–Fock-adjusted pseudopotentials for post-d main group elements: Application to PbH and PbO. J. Chem. Phys. 113, pp. 2563. Cited by: 3rd item.
  • [97] P. D. Mezei, G. I. Csonka, A. Ruzsinszky, and M. Kállay (2015) Construction and application of a new dual-hybrid random phase approximation. J. Chem. Theory Comput. 11, pp. 4615. Cited by: p3.
  • [98] P. D. Mezei, G. I. Csonka, A. Ruzsinszky, and M. Kállay (2017) Construction of a spin-component scaled dual-hybrid random phase approximation. J. Chem. Theory Comput. 13, pp. 796. Cited by: p3.
  • [99] P. D. Mezei and M. Kállay (2019) Construction of a range-separated dual-hybrid direct random phase approximation. J. Chem. Theory Comput. 15, pp. 6678. Cited by: item 7, p3.
  • [100] P. D. Mezei, A. Ruzsinszky, and M. Kállay (2019) Reducing the many-electron self-interaction error in the second-order screened exchange method. J. Chem. Theory Comput. 15, pp. 6607. Cited by: item scspe, item scsph, item, item 7, p3.
  • [101] S. J. Mo, T. Vreven, B. Mennucci, K. Morokuma, and J. Tomasi (2004) Theoretical study of the SN2 reaction of Cl(H2O)+CH3Cl using our own N-layered integrated molecular orbital and molecular mechanics polarizable continuum model method (ONIOM, PCM). Theor. Chem. Acc. 111, pp. 154. Cited by: item oniom_pcm.
  • [102] R. S. Mulliken (1955) Electronic population analysis on LCAO-MO molecular wave functions. I. J. Chem. Phys. 23, pp. 1833. Cited by: item Mulli.
  • [103] M. E. Mura and P. J. Knowles (1996) Improved radial grids for quadrature in molecular density functional calculations. J. Chem. Phys. 104, pp. 9848. Cited by: item Log3, item TA<n>.
  • [104] C. W. Murray, N. C. Handy, and G. J. Laming (1993) Quadrature schemes for integrals of density functional theory. Mol. Phys. 78, pp. 997. Cited by: item EM, item auto.
  • [105] P. R. Nagy and M. Kállay (2017) Optimization of the linear-scaling local natural orbital CCSD(T) method: redundancy-free triples correction using Laplace transform. J. Chem. Phys. 146, pp. 214106. Cited by: item lapl, item topr, item laptol, item 2016, item localcc, item 3, §6.9, p3.
  • [106] P. R. Nagy and M. Kállay (2019) Approaching the basis set limit of CCSD(T) energies for large molecules with local natural orbital coupled-cluster methods. J. Chem. Theory Comput. 15, pp. 5275. External Links: Document Cited by: item Options:, item 1., item 2., item 2018, item 2021, item 2024, §6.9, §6.9, p3.
  • [107] P. R. Nagy, G. Samu, and M. Kállay (2016) An integral-direct linear-scaling second-order Møller–Plesset approach. J. Chem. Theory Comput. 12, pp. 4897. Cited by: item 2, item 3, item Note:, item Default:, item Default:, item locfit1, item Default:, item off, item wpairtol, item wpairtol, item excrad, item 2., item lcorthr, item 2016, item 2018, item 2021, item 3., item localcc, item 3, §6.9, §6.9, §6.9, p3.
  • [108] P. R. Nagy, G. Samu, and M. Kállay (2018) Optimization of the linear-scaling local natural orbital CCSD(T) method: Improved algorithm and benchmark applications. J. Chem. Theory Comput. 14, pp. 4193. Cited by: item naftyp, item Default:, item spairtol, item wpairtol, item wpairtol, item 2., item lcorthr, item 2018, item 2021, item 2024, item localcc, item 2., item localcorrsymm, item 3, §6.9, §6.9, p3.
  • [109] H. S. Nataraj, M. Kállay, and L. Visscher (2010) General implementation of the relativistic coupled-cluster method. J. Chem. Phys. 133, pp. 234109. Cited by: §5.3, item 3, item 2, §6.8, p3.
  • [110] F. Neese, F. Wennmohs, A. Hansen, and U. Becker (2009) Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem. Phys. 356, pp. 98. Cited by: §6.9.
  • [111] J. A. Nelder and R. Mead (1965) A simplex method for function minimization. Comput. J. 7, pp. 308. Cited by: item optalg.
  • [112] P. Neogrády, M. Pitoňák, and M. Urban (2005) Optimized virtual orbitals for correlated calculations: An alternative approach. Mol. Phys. 103, pp. 2141. Cited by: item ovirt.
  • [113] D. P. O’Neill, M. Kállay, and J. Gauss (2007) Analytic evaluation of Raman intensities in coupled-cluster theory. Mol. Phys. 105, pp. 2447. Cited by: item dens, item 1, item 2, item 1, p3.
  • [114] D. P. O’Neill, M. Kállay, and J. Gauss (2007) Calculation of frequency-dependent hyperpolarizabilities using general coupled-cluster models. J. Chem. Phys. 127, pp. 134109. Cited by: item ptfreq, item dens, item 1, item 2, item 1, p3.
  • [115] S. Obara and A. Saika (1986) Efficient recursive computation of molecular integrals over Cartesian Gaussian functions. J. Chem. Phys. 84, pp. 3963. Cited by: item os.
  • [116] J. Olsen, P. Jørgensen, and J. Simons (1990) Passing the one-billion limit in full configuration-interaction (FCI) calculations. Chem. Phys. Lett. 169, pp. 463. Cited by: item olsen.
  • [117] K. A. Peterson, B. C. Shepler, D. Figgen, and H. Stoll (2006) On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. J. Phys. Chem. A 110, pp. 13877. Cited by: 3rd item.
  • [118] K. A. Peterson and C. Puzzarini (2005) Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor. Chem. Acc. 114, pp. 283. Cited by: 4th item.
  • [119] K. A. Peterson, T. B. Adler, and H. Werner (2008) Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B-Ne, and Al-Ar. J. Chem. Phys. 128, pp. 084102. Cited by: 5th item.
  • [120] K. A. Peterson and T. H. Dunning Jr. (2002) Accurate correlation consistent basis sets for molecular core-valence correlation effects: The second row atoms Al-Ar, and the first row atoms B-Ne revisited. J. Chem. Phys. 117, pp. 10548. Cited by: 1st item.
  • [121] K. A. Peterson, D. Figgen, M. Dolg, and H. Stoll (2007) Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd. J. Chem. Phys. 126, pp. 124101. Cited by: 4th item, 3rd item.
  • [122] K. A. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Dolg (2003) Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements. J. Chem. Phys. 119, pp. 11113. Cited by: 4th item, 3rd item.
  • [123] K. A. Peterson (2003) Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13-15 elements. J. Chem. Phys. 119, pp. 11099. Cited by: 4th item.
  • [124] P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese (2015) Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. J. Chem. Phys. 143, pp. 034108. Cited by: item 1.
  • [125] J. Pipek and P. Mezey (1989) A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions. J. Chem. Phys. 90, pp. 4916. Cited by: item pm.
  • [126] R. Polly, H. Werner, F. R. Manby, and P. J. Knowles (2004) Fast Hartree–Fock theory using local fitting approximations. Mol. Phys. 102, pp. 2311. Cited by: item locfit1, item excrad, §6.9.
  • [127] B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, and T. L. Windus (2019) A new basis set exchange: An open, up-to-date resource for the molecular sciences community. J. Chem. Inf. Model. 59, pp. 4814. Cited by: item 2., item 2., §6.10.
  • [128] P. Pulay and S. Saebø (1986) Orbital-invariant formulation and second-order gradient evaluation in Møller–plesset perturbation theory. Theor. Chem. Acc. 69, pp. 357. Cited by: §6.9.
  • [129] D. Rappoport and F. Furche (2010) Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. 133, pp. 134105. Cited by: 4th item, 3rd item.
  • [130] S. Reine, E. Tellgren, and T. Helgaker (2007) A unified scheme for the calculation of differentiated and undifferentiated molecular integrals over solid-harmonic Gaussians. Phys. Chem. Chem. Phys. 9, pp. 4771. Cited by: item 2., item herm.
  • [131] X. Ren, P. Rinke, G. E. Scuseria, and M. Scheffler (2013) Renormalized second-order perturbation theory for the electron correlation energy: Concept, implementation, and benchmarks. Phys. Rev. B 88, pp. 035120. External Links: Document, Link Cited by: item.
  • [132] Y. M. Rhee and M. Head-Gordon (2007) Scaled second-order perturbation corrections to configuration interaction singles: Efficient and reliable excitation energy methods. J. Phys. Chem. A 111, pp. 5314. External Links: Document, Link Cited by: item 2., item scsps_t, item 2., item scspt_t, item, item.
  • [133] C. Riplinger and F. Neese (2013) An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 138, pp. 034106. Cited by: item 0, item wpairtol.
  • [134] Z. Rolik and M. Kállay (2011) A general-order local coupled-cluster method based on the cluster-in-molecule approach. J. Chem. Phys. 135, pp. 104111. Cited by: item Note:, item off, item 1., item lmp2dens, item localcc, item 3, §6.9, p3.
  • [135] Z. Rolik and M. Kállay (2011) Cost-reduction of high-order coupled-cluster methods via active-space and orbital transformation techniques. J. Chem. Phys. 134, pp. 124111. Cited by: item ovirt, item eps, item 2, §6.9, p3.
  • [136] Z. Rolik and M. Kállay (2014) A quasiparticle-based multireference coupled-cluster method. J. Chem. Phys. 141, pp. 134112. Cited by: p3.
  • [137] Z. Rolik, L. Szegedy, I. Ladjánszki, B. Ladóczki, and M. Kállay (2013) An efficient linear-scaling CCSD(T) method based on local natural orbitals. J. Chem. Phys. 139, pp. 094105. Cited by: item disk, item domrad, item lnoepso, item lnoepsv, item 2013, item localcc, item 1, item 3, item 1, §6.9, §6.9, p3.
  • [138] G. Samu and M. Kállay (2017) Efficient evaluation of three-center Coulomb intergrals. J. Chem. Phys. 146, pp. 204101. Cited by: item 1., item 3., p3.
  • [139] G. Schaftenaar and J. H. Noordik (2000) Molden: a pre- and post-processing program for molecular and electronic structures. J. Comput.-Aided Mol. Design 14, pp. 123. Cited by: §14.1.
  • [140] J. Schirmer (1982) Beyond the random-phase approximation: A new approximation scheme for the polarization propagator. Phys. Rev. A 26, pp. 2395. Cited by: item.
  • [141] K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus (2007) Basis set exchange: a community database for computational sciences. J. Chem. Inf. Model. 47, pp. 1045. Cited by: item 2., item 2., §6.10.
  • [142] J. Sikkema, L. Visscher, T. Saue, and M. Iliaš (2009) The molecular mean-field approach for correlated relativistic calculations. J. Chem. Phys. 131, pp. 124116. Cited by: item X2Cmmf.
  • [143] H. Stoll (1992) Correlation energy of diamond. Phys. Rev. B 46, pp. 6700. Cited by: §6.9.
  • [144] R. Strange, F. R. Manby, and P. J. Knowles (2001) Automatic code generation in density functional theory. Comput. Phys. Commun. 136, pp. 310. Cited by: item 1..
  • [145] A. Takatsuka, S. Ten-no, and W. Hackbusch (2008) Minimax approximation for the decomposition of energy denominators in Laplace-transformed Møller–Plesset perturbation theories. J. Chem. Phys. 129, pp. 044112. Cited by: item 1., item 2..
  • [146] J. Tomasi, B. Mennucci, and R. Cammi (2005) Quantum mechanical continuum solvation models. Chem. Rev. 105, pp. 2999. External Links: Document Cited by: item pcm, item 6.
  • [147] J. Toulouse, W. Zhu, A. Savin, G. Jansen, and J. G. Ángyán (2011) Closed-shell ring coupled cluster doubles theory with range separation applied on weak intermolecular interactions. J. Chem. Phys. 135, pp. 084119. Cited by: item, item, item.
  • [148] T. Vreven, B. Mennucci, C. O. da Silva, K. Morokuma, and J. Tomasi (2001) The ONIOM-PCM method: Combining the hybrid molecular orbital method and the polarizable continuum model for solvation. Application to the geometry and properties of a merocyanine in solution. J. Chem. Phys. 115, pp. 62. Cited by: item oniom_pcm.
  • [149] O. A. Vydrov and T. Van Voorhis (2010) Nonlocal van der Waals density functional: The simpler the better. J. Chem. Phys. 133, pp. 244103. External Links: Link, Document Cited by: item 8..
  • [150] W. R. Wadt and P. J. Hay (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, pp. 284. Cited by: 1st item, 1st item.
  • [151] F. Weigend and R. Ahlrichs (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy integrals over Gaussian functions. Phys. Chem. Chem. Phys. 7, pp. 3297. Cited by: 3rd item, 2nd item.
  • [152] F. Weigend, M. Häser, H. Patzelt, and R. Ahlrichs (1998) RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 294, pp. 143. Cited by: 7th item.
  • [153] F. Weigend, A. Köhn, and C. Hättig (2002) Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J. Chem. Phys. 116, pp. 3175. Cited by: 7th item.
  • [154] F. Weigend (2008) Hartree–Fock exchange fitting basis sets for H to Rn. J. Comput. Chem. 29, pp. 167. Cited by: 9th item.
  • [155] N. O. C. Winter and C. Hättig (2011) Scaled opposite-spin CC2 for ground and excited states with fourth order scaling computational costs. J. Chem. Phys. 134, pp. 184101. Cited by: item scsps, item scspt, item, item.
  • [156] D. E. Woon and T. H. Dunning Jr. (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98, pp. 1358. Cited by: 1st item.
  • [157] D. E. Woon and T. H. Dunning Jr. (1995) Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon. J. Chem. Phys. 103, pp. 4572. Cited by: 1st item.