References
- [1]
Mihály Kállay, Péter R. Nagy, Dávid Mester, Zoltán Rolik,
Gyula Samu, József Csontos, József Csóka, P. Bernát
Szabó, László Gyevi-Nagy, Bence Hégely, István
Ladjánszki, Lóránt Szegedy, Bence Ladóczki, Klára Petrov,
Máté Farkas, Pál D. Mezei, and Ádám Ganyecz: The MRCC
program system: Accurate quantum chemistry from water to proteins,
J. Chem. Phys. 152, 074107 (2020).
- [2]
Dávid Mester, Péter R. Nagy, József Csóka, László
Gyevi-Nagy, P. Bernát Szabó, Réka A. Horváth, Klára
Petrov, Bence Hégely, Bence Ladóczki, Gyula Samu, Balázs D.
Lőrincz, and Mihály Kállay: Overview of developments in the
MRCC program system,
J. Phys. Chem. A 129, 2086 (2025).
- [3]
Mihály Kállay and Péter R. Surján: Higher excitations in
coupled-cluster theory,
J. Chem. Phys. 115, 2945 (2001).
- [4]
Mihály Kállay, Péter G. Szalay, and Péter R. Surján: A general
state-selective coupled-cluster algorithm,
J. Chem. Phys. 117, 980 (2002).
- [5]
Mihály Kállay, Jürgen Gauss, and Péter G. Szalay: Analytic
first derivatives for general coupled-cluster and configuration interaction
models,
J. Chem. Phys. 119, 2991 (2003).
- [6]
Mihály Kállay and Jürgen Gauss: Analytic second derivatives for
general coupled-cluster and configuration interaction models,
J. Chem. Phys. 120, 6841 (2004).
- [7]
Mihály Kállay and Jürgen Gauss: Calculation of excited-state
properties using general coupled-cluster and configuration-interaction
models,
J. Chem. Phys. 121, 9257 (2004).
- [8]
Yannick J. Bomble, John F. Stanton, Mihály Kállay, and Jürgen
Gauss: Coupled cluster methods including non-iterative approximate quadruple
excitation corrections,
J. Chem. Phys. 123, 054101 (2005).
- [9]
Mihály Kállay and Jürgen Gauss: Approximate treatment of higher
excitations in coupled-cluster theory,
J. Chem. Phys. 123, 214105 (2005).
- [10]
Jürgen Gauss, Attila Tajti, Mihály Kállay, John F. Stanton, and
Péter G. Szalay: Analytic calculation of the diagonal
Born–Oppenheimer correction within configuration-interaction and
coupled-cluster theory,
J. Chem. Phys. 125, 144111 (2006).
- [11]
Mihály Kállay and Jürgen Gauss: Calculation of frequency-dependent
polarizabilities using general coupled-cluster models,
J. Mol. Struct.:THEOCHEM 768, 71 (2006).
- [12]
Jürgen Gauss, Kenneth Ruud, and Mihály Kállay: Gauge-origin
independent calculation of magnetizabilities and rotational tensors at
the coupled-cluster level,
J. Chem. Phys. 127, 074101 (2007).
- [13]
Darragh P. O’Neill, Mihály Kállay, and Jürgen Gauss: Calculation
of frequency-dependent hyperpolarizabilities using general coupled-cluster
models,
J. Chem. Phys. 127, 134109 (2007).
- [14]
Darragh P. O’Neill, Mihály Kállay, and Jürgen Gauss: Analytic
evaluation of Raman intensities in coupled-cluster theory,
Mol. Phys. 105, 2447 (2007).
- [15]
Mihály Kállay and Jürgen Gauss: Approximate treatment of higher
excitations in coupled-cluster theory. II. Extension to general
single-determinant reference functions and improved approaches for the
canonical Hartree–Fock case,
J. Chem. Phys. 129, 144101 (2008).
- [16]
Jürgen Gauss, Mihály Kállay, and Frank Neese: Calculation of
electronic g-tensors using coupled-cluster theory,
J. Phys. Chem. A 113, 11541 (2009).
- [17]
Sanghamitra Das, Debashis Mukherjee, and Mihály Kállay: Full
implementation and benchmark studies of Mukherjee’s state-specific
multi-reference coupled-cluster ansatz,
J. Chem. Phys. 132, 074103 (2010).
- [18]
Huliyar S. Nataraj, Mihály Kállay, and Lucas Visscher: General
implementation of the relativistic coupled-cluster method,
J. Chem. Phys. 133, 234109 (2010).
- [19]
Sanghamitra Das, Mihály Kállay, and Debashis Mukherjee: Inclusion of
selected higher excitations involving active orbitals in the state-specific
multi-reference coupled-cluster theory,
J. Chem. Phys. 133, 234110 (2010).
- [20]
Mihály Kállay, Huliyar S. Nataraj, Bijaya K. Sahoo, Bhanu P. Das, and
Lucas Visscher: Relativistic general-order coupled-cluster method for
high-precision calculations: Application to the Al+ atomic clock,
Phys. Rev. A 83, 030503(R) (2011).
- [21]
Zoltán Rolik and Mihály Kállay: Cost-reduction of high-order
coupled-cluster methods via active-space and orbital transformation
techniques,
J. Chem. Phys. 134, 124111 (2011).
- [22]
Zoltán Rolik and Mihály Kállay: A general-order local
coupled-cluster method based on the cluster-in-molecule approach,
J. Chem. Phys. 135, 104111 (2011).
- [23]
Sanghamitra Das, Mihály Kállay, and Debashis Mukherjee: Superior
performance of Mukherjee’s state-specific multi-reference coupled-cluster
theory at the singles and doubles truncation scheme with localized active
orbitals,
Chem. Phys. 392, 83 (2012).
- [24]
Zoltán Rolik, Lóránt Szegedy, István Ladjánszki, Bence
Ladóczki, and Mihály Kállay: An efficient linear-scaling
CCSD(T) method based on local natural orbitals,
J. Chem. Phys. 139, 094105 (2013).
- [25]
Zoltán Rolik and Mihály Kállay: A quasiparticle-based
multireference coupled-cluster method,
J. Chem. Phys. 141, 134112 (2014).
- [26]
Mihály Kállay: A systematic way for the cost reduction of density
fitting methods,
J. Chem. Phys. 141, 244113 (2014).
- [27]
Dávid Mester, József Csontos, and Mihály Kállay: Unconventional
bond functions for quantum chemical calculations,
Theor. Chem. Acc. 134, 74 (2015).
- [28]
Pál D. Mezei, Gábor I. Csonka, Adrienn Ruzsinszky, and Mihály
Kállay: Construction and application of a new dual-hybrid random phase
approximation,
J. Chem. Theory Comput. 11, 4615 (2015).
- [29]
Bence Hégely, Ferenc Bogár, György G. Ferenczy, and Mihály
Kállay: A QM/MM program using frozen localized orbitals and the
Huzinaga equation,
Theor. Chem. Acc. 134, 132 (2015).
- [30]
Mihály Kállay: Linear-scaling implementation of the direct random-phase
approximation,
J. Chem. Phys. 142, 204105 (2015).
- [31]
Péter R. Nagy, Gyula Samu, and Mihály Kállay: An integral-direct
linear-scaling second-order Møller–Plesset approach,
J. Chem. Theory Comput. 12, 4897 (2016).
- [32]
Pál D. Mezei, Gábor I. Csonka, Adrienn Ruzsinszky, and Mihály
Kállay: Construction of a spin-component scaled dual-hybrid random phase
approximation,
J. Chem. Theory Comput. 13, 796 (2017).
- [33]
Bence Hégely, Péter R. Nagy, György G. Ferenczy, and Mihály
Kállay: Exact density functional and wave function embedding schemes
based on orbital localization,
J. Chem. Phys. 145, 064107 (2016).
- [34]
Gyula Samu and Mihály Kállay: Efficient evaluation of three-center
Coulomb integrals,
J. Chem. Phys. 146, 204101 (2017).
- [35]
Dávid Mester, Péter R. Nagy, and Mihály Kállay: Reduced-cost
linear-response CC2 method based on natural orbitals and natural auxiliary
functions,
J. Chem. Phys. 146, 194102 (2017).
- [36]
Péter R. Nagy and Mihály Kállay: Optimization of the linear-scaling
local natural orbital CCSD(T) method: Redundancy-free triples correction
using Laplace transform,
J. Chem. Phys. 146, 214106 (2017).
- [37]
Dávid Mester, Péter R. Nagy, and Mihály Kállay: Reduced-cost
second-order algebraic-diagrammatic construction method for excitation
energies and transition moments,
J. Chem. Phys. 148, 094111 (2018).
- [38]
Péter R. Nagy, Gyula Samu, and Mihály Kállay: Optimization of the
linear-scaling local natural orbital CCSD(T) method: Improved algorithm
and benchmark applications,
J. Chem. Theory Comput. 14, 4193 (2018).
- [39]
Bence Hégely, Péter R. Nagy, and Mihály Kállay: Dual basis set
approach for density functional and wave function embedding schemes,
J. Chem. Theory Comput. 14, 4600 (2018).
- [40]
Dávid Mester and Mihály Kállay: Reduced-scaling approach for
configuration interaction singles and time-dependent density functional
theory calculations using hybrid functionals,
J. Chem. Theory Comput. 15, 1690 (2019).
- [41]
Dávid Mester and Mihály Kállay: Combined density functional and
algebraic-diagrammatic construction approach for accurate excitation energies
and transition moments,
J. Chem. Theory Comput. 15, 4440 (2019).
- [42]
Péter R. Nagy and Mihály Kállay: Approaching the basis set limit of
CCSD(T) energies for large molecules with local natural orbital
coupled-cluster methods,
J. Chem. Theory Comput. 15, 5275 (2019).
- [43]
Dávid Mester, Péter R. Nagy, and Mihály Kállay: Reduced-scaling
correlation methods for the excited states of large molecules:
Implementation and benchmarks for the second-order algebraic-diagrammatic
construction approach,
J. Chem. Theory Comput. 15, 6111 (2019).
- [44]
Pál D. Mezei, Adrienn Ruzsinszky, and Mihály Kállay: Reducing the
many-electron self-interaction error in the second-order screened exchange
method,
J. Chem. Theory Comput. 15, 6607 (2019).
- [45]
Pál D. Mezei and Mihály Kállay: Construction of a range-separated
dual-hybrid direct random phase approximation,
J. Chem. Theory Comput. 15, 6678 (2019).
- [46]
László Gyevi-Nagy, Mihály Kállay, and Péter R. Nagy:
Integral-direct and parallel implementation of the CCSD(T) method:
Algorithmic developments and large-scale applications,
J. Chem. Theory Comput. 16, 366 (2020).
- [47]
József Csóka and Mihály Kállay: Speeding up density fitting
Hartree–Fock calculations with multipole approximations,
Mol. Phys. 118, e1769213 (2020).
- [48]
László Gyevi-Nagy, Mihály Kállay, and Péter R. Nagy: Accurate
reduced-cost CCSD(T) energies: Parallel implementation, benchmarks, and
large-scale applications,
J. Chem. Theory Comput. 17, 860 (2021).
- [49]
Dávid Mester and Mihály Kállay: A simple range-separated
double-hybrid density functional theory for excited states,
J. Chem. Theory Comput. 17, 927 (2021).
- [50]
József Csóka and Mihály Kállay: Speeding up Hartree–Fock
and Kohn–Sham calculations with first-order corrections,
J. Chem. Phys. 154, 164114 (2021).
- [51]
P. Bernát Szabó, József Csóka, Mihály Kállay, and
Péter R. Nagy: Linear scaling open-shell MP2 approach: algorithm,
benchmarks, and large-scale applications,
J. Chem. Theory Comput. 17, 2886 (2021).
- [52]
Dávid Mester and Mihály Kállay: Spin-scaled range-separated
double-hybrid density functional theory for excited states,
J. Chem. Theory Comput. 17, 4211 (2021).
- [53]
Mihály Kállay, Réka A. Horváth, László Gyevi-Nagy, and
Péter R. Nagy: Size-consistent explicitly correlated triple excitation
correction,
J. Chem. Phys. 155, 034107 (2021).
- [54]
Bence Hégely and Mihály Kállay: Multilevel approach to the initial
guess for self-consistent field calculations,
Int. J. Quantum Chem. 122, e26782 (2021).
- [55]
Péter R. Nagy, László Gyevi-Nagy, and Mihály Kállay: Basis
set truncation corrections for improved frozen natural orbital CCSD(T)
energies,
Mol. Phys. 119, e1963495 (2021).
- [56]
Ádám Ganyecz and Mihály Kállay: Implementation and optimization
of the embedded cluster reference interaction site model,
J. Phys. Chem. A 126, 2417 (2022).
- [57]
Dávid Mester and Mihály Kállay: Accurate spectral properties within
double-hybrid density functional theory: A spin-scaled range-separated
second-order algebraic-diagrammatic construction-based approach,
J. Chem. Theory Comput. 18, 865 (2022).
- [58]
Dávid Mester and Mihály Kállay: Charge-transfer excitations within
density functional theory: How accurate are the most recommended
approaches?,
J. Chem. Theory Comput. 18, 1646 (2022).
- [59]
Péter R. Nagy, László Gyevi-Nagy, Balázs D. Lőrincz, and
Mihály Kállay: Pursuing the basis set limit of CCSD(T) non-covalent
interaction energies for medium-sized complexes: case study on the S66
compilation,
Mol. Phys. 121, e2109526 (2023).
- [60]
Mihály Kállay, Réka A. Horváth, László Gyevi-Nagy, and
Péter R. Nagy: Basis set limit CCSD(T) energies for extended molecules
via a reduced-cost explicitly correlated approach,
J. Chem. Theory Comput. 19, 174 (2023).
- [61]
Bence Hégely, Ádám B. Szirmai, Dávid Mester, Attila Tajti,
Péter G. Szalay, and Mihály Kállay: Performance of multilevel
methods for excited states,
J. Phys. Chem. A 126, 6548 (2022).
- [62]
Dávid Mester and Mihály Kállay: Double-hybrid density functional
theory for core excitations: Theory and benchmark calculations,
J. Chem. Theory Comput. 19, 1310 (2023).
- [63]
Dávid Mester and Mihály Kállay: Reduced-cost second-order
algebraic-diagrammatic construction method for core excitations,
J. Chem. Theory Comput. 19, 2850 (2023).
- [64]
József Csóka and Mihály Kállay: Analytic gradients for local
density fitting Hartree–Fock and Kohn–Sham methods,
J. Chem. Phys. 158, 024110 (2023).
- [65]
Dávid Mester and Mihály Kállay: Vertical ionization potentials and
electron affinities at the double-hybrid density functional level,
J. Chem. Theory Comput. 19, 3982 (2023).
- [66]
P. Bernát Szabó, József Csóka, Mihály Kállay, and
Péter R. Nagy: Linear-scaling local natural orbital CCSD(T) approach
for open-shell systems: algorithm, benchmarks, and large-scale applications,
J. Chem. Theory Comput. 19, 8166 (2023).
- [67]
Dávid Mester and Mihály Kállay: Basis set limit of CCSD(T)
energies: Explicit correlation versus density-based basis-set correction,
J. Chem. Theory Comput. 19, 8210 (2023).
- [68]
Réka A. Horváth and Mihály Kállay: Basis set limit MP2
energies for extended molecules via a reduced-cost explicitly correlated
approach,
Mol. Phys. 122, e2304103 (2024).
- [69]
József Csóka, Bence Hégely, Péter R. Nagy, and Mihály
Kállay: Development of analytic gradients for the Huzinaga quantum
embedding method and its applications to large-scale hybrid and double hybrid
DFT forces,
J. Chem. Phys. 160, 124113 (2024).
- [70]
Klára Petrov, József Csóka, and Mihály Kállay: Analytic
gradients for density fitting MP2 using natural auxiliary functions,
J. Phys. Chem. A 128, 6566 (2024).
- [71]
Dávid Mester, Péter R. Nagy, and Mihály Kállay: Basis-set limit
CCSD(T) energies for large molecules with local natural orbitals and
reduced-scaling basis-set corrections,
J. Chem. Theory Comput. 20, 7453 (2024).
- [72]
Dávid Mester and Mihály Kállay: Higher-order coupled-cluster
calculations with basis-set corrections,
Chem. Phys. Lett. 861, 141780 (2025).
- [73]
Bence Ladóczki, László Gyevi-Nagy, Péter R. Nagy, and Mihály
Kállay: Enabling accurate and large-scale explicitly correlated CCSD(T)
computations via a reduced-cost and parallel implementation,
J. Chem. Theory Comput. 21, 2432 (2025).
- [74]
Jan Řezáč: Cuby: An integrative framework for computational
chemistry,
J. Comput. Chem. 37, 1230 (2016).
- [75]
Thomas Weymuth, Jan P. Unsleber, Paul L. Türtscher, Miguel Steiner,
Jan-Grimo Sobez, Charlotte H. Müller, Maximilian Mörchen, Veronika
Klasovita, Stephanie A. Grimmel, Marco Eckhoff, Katja-Sophia Csizi, Francesco
Bosia, Moritz Bensberg, and Markus Reiher: SCINE-software for chemical
interaction networks,
J. Chem. Phys. 160, 222501 (2024).
- [76]
P. Salvador, E. Ramos-Cordoba, M. Montilla, L. Pujal, and M. Gimferrer:
APOST-3D: Chemical concepts from wavefunction analysis,
J. Chem. Phys. 160, 172502 (2024).
- [77]
https://ash.readthedocs.io/en/latest/index.html,
Accessed Jan 1, 2025.
- [78]
https://cuby4.molecular.cz/,
Accessed Jan 1, 2025.
- [79]
https://github.com/qcscine,
Accessed Jan 1, 2025.
- [80]
https://github.com/mgimferrer/apost3d.git,
Accessed Jan 1, 2025.
- [81]
A. Götz, M. A. Clack, and R. C. Walker: An extensible interface for QM/MM
molecular dynamics simulations with amber,
J. Comput. Chem. 35, 95 (2014).
- [82]
Frederick R. Manby, Martina Stella, Jason D. Goodpaster, and Thomas F. Miller
III: A simple, exact density-functional-theory embedding scheme,
J. Chem. Theory Comput. 8, 2564 (2012).
- [83]
F. Maseras and K. Morokuma: IMOMM – A new integrated ab-initio plus
molecular mechanics geometry optimization scheme of equilibrium structures
and transition-states,
J. Comput. Chem. 16, 1170 (1995).
- [84]
Thomas Kloss, Jochen Heil, and Stefan M. Kast: Quantum chemistry in solution by
combining 3D integral equation theory with a cluster embedding approach,
J. Phys. Chem. B 112, 4337 (2008).
- [85]
Stefan M. Kast, Jochen Heil, Stefan Güssregen, and K. Friedemann Schmidt:
Prediction of tautomer ratios by embedded-cluster integral equation theory,
J. Comput. Aided Mol. Des. 24, 343 (2010).
- [86]
C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert,
S. Spicher, and S. Grimme: Extended tight-binding quantum chemistry methods,
Wiley Interdiscip. Rev.: Comput. Mol. Sci. 11, e1493
(2020).
- [87]
S. Grimme, C. Bannwarth, and P. Shushkov: A robust and accurate tight-binding
quantum chemical method for structures, vibrational frequencies, and
noncovalent interactions of large molecular systems parametrized for all
spd-block elements (Z = 1-86),
J. Chem. Theory Comput. 13, 1989 (2017).
- [88]
C. Bannwarth, S. Ehlert, and S. Grimme: GFN2-xTB—An accurate and broadly
parametrized self-consistent tight-binding quantum chemical method with
multipole electrostatics and density-dependent dispersion contributions,
J. Chem. Theory Comput. 15, 1652 (2019).
- [89]
S. Spicher and S. Grimme: Robust atomistic modeling of materials,
organometallic, and biochemical systems,
Angew. Chem. Int. Ed. 59, 15665 (2020).
- [90]
S. Ehlert, M. Stahn, S. Spicher, and S. Grimme: Robust and efficient implicit
solvation model for fast semiempirical methods,
J. Chem. Theory Comput. 17, 4250 (2021).
- [91]
Mopac2016, James J. P. Stewart, Stewart Computational Chemistry,
web: http://OpenMOPAC.net.
- [92]
Dávid Mester and Mihály Kállay: Near-basis-set-limit double-hybrid
DFT energies with exceptionally low computational costs,
J. Phys. Chem. Lett. 16, 2136–2143 (2025).
- [93]
S. Humbel, S. Sieber, and K. Morokuma: The IMOMO method: Integration of
different levels of molecular orbital approximations for geometry
optimization of large systems: Test for -butane conformation and
SN2 reaction: RCl+Cl-,
J. Chem. Phys. 105, 1959 (1996).
- [94]
Jacopo Tomasi, Benedetta Mennucci, and Roberto Cammi: Quantum mechanical
continuum solvation models,
Chem. Rev. 105, 2999 (2005).
- [95]
Roberto Di Remigio, Krzysztof Mozgawa, Hui Cao, Ville Weijo, and Luca Frediani:
A polarizable continuum model for molecules at spherical diffuse interfaces,
J. Chem. Phys. 144, 124103 (2016).
- [96]
Roberto Di Remigio, Arnfinn Hykkerud Steindal, Krzysztof Mozgawa, Ville Weijo,
Hui Cao, and Luca Frediani: PCMSolver: An open-source library for
solvation modeling,
Int. J. Quantum Chem. 119, e25685 (2019).
- [97]
PCMSolver, an open-source library for the polarizable continuum model
electrostatic problem, written by R. Di Remigio, L. Frediani and contributors
(see http://pcmsolver.readthedocs.io/),
Accessed Jan 1, 2025.
- [98]
A. Szabo and N. S. Ostlund,
Modern Quantum Chemistry,
McGraw-Hill: New York: 1989.
- [99]
C. C. J. Roothaan: Self-consistent field theory for open shells of electronic
systems,
Rev. Mod. Phys. 32, 179 (1960).
- [100]
T. Helgaker, P. Jørgensen, and J. Olsen,
Molecular Electronic Structure Theory,
Wiley: Chichester: 2000.
- [101]
József Csóka and Mihály Kállay,
to be published,
2020.
- [102]
W. Kohn and L. J. Sham: Self-consistent equations including exchange and
correlation effects,
Phys. Rev. 140, A1133 (1965).
- [103]
Michael Filatov and Sason Shaik: Spin-restricted density functional approach to
the open-shell problem,
Chem. Phys. Lett. 288, 689 (1998).
- [104]
Andreas Savin and Heinz-Jürgen Flad: Density functionals for the Yukawa
electron-electron interaction,
Int. J. Quantum Chem. 56, 327 (1995).
- [105]
Stefan Grimme: Semiempirical hybrid density functional with perturbative
second-order correlation,
J. Chem. Phys. 124, 034108 (2006).
- [106]
János G. Ángyán, Iann C. Gerber, Andreas Savin, and Julien Toulouse:
van der Waals forces in density functional theory: Perturbational
long-range electron-interaction corrections,
Phys. Rev. A 72, 012510 (2005).
- [107]
Cairedine Kalai and Julien Toulouse: A general range-separated double-hybrid
density-functional theory,
J. Chem. Phys. 148, 164105 (2018).
- [108]
C. Møller and M. S. Plesset: Note on an approximation treatment for
many-electron systems,
Phys. Rev. 46, 618 (1934).
- [109]
Stefan Grimme: Improved second-order Møller–Plesset perturbation theory
by separate scaling of parallel- and antiparallel-spin pair correlation
energies,
J. Chem. Phys. 118, 9095 (2003).
- [110]
Yousung Jung, Rohini C. Lochan, Anthony D. Dutoi, and Martin Head-Gordon:
Scaled opposite-spin second order Møller–Plesset correlation energy:
An economical electronic structure method,
J. Chem. Phys. 121, 9793 (2004).
- [111]
Stanislav Kedžuch, Matúš Milko, and Jozef Noga: Alternative
formulation of the matrix elements in MP2-R12 theory,
Int. J. Quantum Chem. 105, 929 (2005).
- [112]
Rafał A. Bachorz, Florian A. Bischoff, Andreas Glöß, Christof
Hättig, Sebastian Höfener, Wim Klopper, and David P. Tew: The
MP2-F12 method in the turbomole program package,
J. Comput. Chem. 32, 2492 (2011).
- [113]
Filipp Furche: Molecular tests of the random phase approximation to the
exchange-correlation energy functional,
Phys. Rev. B 64, 195120 (2001).
- [114]
Andreas Grüneis, Martijn Marsman, Judith Harl, Laurids Schimka, and Georg
Kresse: Making the random phase approximation to electronic correlation
accurate,
J. Chem. Phys. 131, 154115 (2009).
- [115]
Xinguo Ren, Patrick Rinke, Gustavo E. Scuseria, and Matthias Scheffler:
Renormalized second-order perturbation theory for the electron correlation
energy: Concept, implementation, and benchmarks,
Phys. Rev. B 88, 035120 (2013).
- [116]
A. Szabo and N. S. Ostlund: The correlation energy in the random phase
approximation: Intermolecular forces between closed-shell systems,
J. Chem. Phys. 67, 4351 (1977).
- [117]
Andreas Heßelmann: Random-phase-approximation correlation method including
exchange interactions,
Phys. Rev. A 85, 012517 (2012).
- [118]
O. Christiansen, H. Koch, and P. Jørgensen: The second-order approximate
coupled cluster singles and doubles model CC2,
Chem. Phys. Lett. 243, 409 (1995).
- [119]
Arnim Hellweg, Sarah A. Grün, and Christof Hättig: Benchmarking the
performance of spin-component scaled CC2 in ground and electronically
excited states,
Phys. Chem. Chem. Phys. 10, 4119 (2008).
- [120]
Nina O. C. Winter and Christof Hättig: Scaled opposite-spin CC2 for
ground and excited states with fourth order scaling computational costs,
J. Chem. Phys. 134, 184101 (2011).
- [121]
Rodney J Bartlett and David M Silver: Many-body perturbation theory applied to
electron pair correlation energies. I. Closed-shell first-row diatomic
hydrides,
J. Chem. Phys. 62, 3258 (1975).
- [122]
J. Čížek: On the correlation problem in atomic and molecular
systems. Calculation of wavefunction components in Ursell-type expansion
using quantum-field theoretical methods,
J. Chem. Phys. 45, 4256 (1966).
- [123]
G. D. Purvis III and R. J. Bartlett: A full coupled-cluster singles and
doubles model: The inclusion of disconnected triples,
J. Chem. Phys. 76, 1910 (1982).
- [124]
J. Noga and R. J. Bartlett: The full CCSDT model for molecular electronic
structure,
J. Chem. Phys. 86, 7041 (1987).
- [125]
S. A. Kucharski and R. J. Bartlett: The coupled-cluster single, double, triple,
and quadruple excitation method,
J. Chem. Phys. 97, 4282 (1992).
- [126]
K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon: A fifth-order
perturbation comparison of electron correlation theories,
Chem. Phys. Lett. 157, 479 (1989).
- [127]
M. Urban, J. Noga, S. J. Cole, and R. J. Bartlett: Towards a full CCSDT model
for electron correlation,
J. Chem. Phys. 83, 4041 (1985).
- [128]
S. A. Kucharski and R. J. Bartlett: An efficient way to include connected
quadruple contributions into the coupled cluster method,
J. Chem. Phys. 108, 9221 (1998).
- [129]
S. A. Kucharski and R. J. Bartlett: Noniterative energy corrections through
fifth-order to the coupled cluster singles and doubles method,
J. Chem. Phys. 108, 5243 (1998).
- [130]
T. D. Crawford and J. F. Stanton: Investigation of an asymmetric
triple-excitation correction for coupled-cluster energies,
Int. J. Quantum Chem. 70, 601 (1998).
- [131]
Y. S. Lee, S. A. Kucharski, and R. J. Bartlett: A coupled cluster approach with
triple excitations,
J. Chem. Phys. 81, 5906 (1984).
- [132]
H. Koch, O. Christiansen, P. Jørgensen, A. M. Sánchez de Merás, and
T. Helgaker: The CC3 model: An iterative coupled cluster approach
including connected triples,
J. Chem. Phys. 106, 1808 (1997).
- [133]
Christof Hättig, David P. Tew, and Andreas Köhn: Accurate and efficient
approximations to explicitly correlated coupled-cluster singles and doubles,
CCSD-F12,
J. Chem. Phys. 132, 231102 (2010).
- [134]
G. Knizia, T. B. Adler, and H.-J. Werner: Simplified CCSD(T)-F12 methods:
Theory and benchmarks,
J. Chem. Phys. 130, 054104 (2009).
- [135]
Emmanuel Giner, Barthélémy Pradines, Anthony Ferté, Roland Assaraf,
Andreas Savin, and Julien Toulouse: Curing basis-set convergence of
wave-function theory using density-functional theory: A systematically
improvable approach,
J. Chem. Phys. 149, 194301 (2018).
- [136]
Pierre-François Loos, Barthélémy Pradines, Anthony Scemama,
Julien Toulouse, and Emmanuel Giner: A density-based basis-set correction for
wave function theory,
J. Phys. Chem. Lett. 10, 2931 (2019).
- [137]
N. Oliphant and L. Adamowicz: Multireference coupled-cluster method using a
single-reference formalism,
J. Chem. Phys. 94, 1229 (1991).
- [138]
P. Piecuch, N. Oliphant, and L. Adamowicz: A state-selective multireference
coupled-cluster theory employing the single-reference formalism,
J. Chem. Phys. 99, 1875 (1993).
- [139]
R. J. Buenker and S. D. Peyerimhoff: Individualized configuration selection in
CI calculations with subsequent energy extrapolation,
Theor. Chem. Acc. 35, 33 (1974).
- [140]
Stephen R. Langhoff and Ernest R. Davidson: Configuration interaction
calculations on the nitrogen molecule,
Int. J. Quantum Chem. 8, 61 (1974).
- [141]
J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch: Toward a
systematic molecular orbital theory for excited states,
J. Phys. Chem. 96, 135 (1992).
- [142]
A. D. McLachlan and A. M. Ball: Time-dependent Hartree–Fock theory for
molecules,
Rev. Mod. Phys. 36, 844 (1964).
- [143]
M. E. Casida,
Recent advances in density functional methods,
in Computational Chemistry: Reviews of Current Trends, edited
by D. P. Chong: volume 1: World Scientific: Singapore: 1999.
- [144]
So Hirata and Martin Head-Gordon: Time-dependent density functional theory
within the Tamm–Dancoff approximation,
Chem. Phys. Lett. 314, 291 (1999).
- [145]
Takeshi Yanai, David P Tew, and Nicholas C Handy: A new hybrid
exchange-correlation functional using the Coulomb-attenuating method
(CAM-B3LYP),
Chem. Phys. Lett. 393, 51 (2004).
- [146]
Yoshihiro Tawada, Takao Tsuneda, Susumu Yanagisawa, Takeshi Yanai, and Kimihiko
Hirao: A long-range-corrected time-dependent density functional theory,
J. Chem. Phys. 120, 8425 (2004).
- [147]
Stefan Grimme and Frank Neese: Double-hybrid density functional theory for
excited electronic states of molecules,
J. Chem. Phys. 127, 154116 (2007).
- [148]
Marcos Casanova-Páez, Michael B. Dardis, and Lars Goerigk: B2PLYP
and B2GPPLYP: The first two double-hybrid density functionals
with long-range correction optimized for excitation energies,
J. Chem. Theory Comput. 15, 4735 (2019).
- [149]
M. Head-Gordon, R. J. Rico, M. Oumi, and T. J. Lee: A doubles correction to
electronic excited states from configuration interaction in the space of
single substitutions,
Chem. Phys. Lett. 219, 21 (1994).
- [150]
Stefan Grimme and Ekaterina I. Izgorodina: Calculation of 0–0 excitation
energies of organic molecules by CIS(D) quantum chemical methods,
Chem. Phys. 305, 223 (2004).
- [151]
Young Min Rhee and Martin Head-Gordon: Scaled second-order perturbation
corrections to configuration interaction singles: Efficient and reliable
excitation energy methods,
J. Phys. Chem. A 111, 5314 (2007).
- [152]
Martin Head-Gordon, Manabu Oumi, and David Maurice: Quasidegenerate
second-order perturbation corrections to single-excitation configuration
interaction,
Mol. Phys. 96, 593 (1999).
- [153]
Jochen Schirmer: Beyond the random-phase approximation: A new approximation
scheme for the polarization propagator,
Phys. Rev. A 26, 2395 (1982).
- [154]
P. Piecuch, S. A. Kucharski, and R. J. Bartlett: Coupled-cluster methods with
internal and semi-internal triply and quadruply excited clusters: CCSDt and
CCSDtq approaches,
J. Chem. Phys. 110, 6103 (1999).
- [155]
WanZhen Liang and Martin Head-Gordon: Approaching the basis set limit in
density functional theory calculations using dual basis sets without
diagonalization,
J. Phys. Chem. A 108, 3206 (2004).
- [156]
R. B. Murphy, Y. Cao, M. D. Beachy, M. N. Ringnalda, and R. A. Friesner:
Efficient pseudospectral methods for density functional calculations,
J. Chem. Phys. 112, 10131 (2000).
- [157]
F. Neese, F. Wennmohs, A. Hansen, and U. Becker: Efficient, approximate and
parallel Hartree–Fock and hybrid DFT calculations. A
‘chain-of-spheres’ algorithm for the Hartree–Fock exchange,
Chem. Phys. 356, 98 (2009).
- [158]
Robert Polly, Hans-Joachim Werner, Frederick R. Manby, and Peter J. Knowles:
Fast Hartree–Fock theory using local fitting approximations,
Mol. Phys. 102, 2311 (2004).
- [159]
Samuel Manzer, Paul R. Horn, Narbe Mardirossian, and Martin Head-Gordon: Fast,
accurate evaluation of exact exchange: The occ-RI-K algorithm,
J. Chem. Phys. 143, 024113 (2015).
- [160]
S. Li, J. Ma, and Y. Jiang: Linear scaling local correlation approach for
solving the coupled cluster equations of large systems,
J. Comput. Chem. 23, 237 (2002).
- [161]
H. Stoll: Correlation energy of diamond,
Phys. Rev. B 46, 6700 (1992).
- [162]
P. Pulay and S. Saebø: Orbital-invariant formulation and second-order
gradient evaluation in Møller–Plesset perturbation theory,
Theor. Chem. Acc. 69, 357 (1986).
- [163]
Yasmine S. Al-Hamdani, Péter R. Nagy, Dennis Barton, Mihály Kállay,
Jan Gerit Brandenburg, and Alexandre Tkatchenko: Interactions between large
molecules pose a puzzle for reference quantum mechanical methods,
Nat. Commun. 12, 3927 (2021).
- [164]
Tamás Földes, Ádám Madarász, Ágnes Révész,
Zoltán Dobi, Szilárd Varga, Andrea Hamza, Péter R. Nagy, Petri M.
Pihko, and Imre Pápai: Stereocontrol in diphenylprolinol silyl ether
catalyzed michael additions: Steric shielding or Curtin–Hammett scenario?,
J. Am. Chem. Soc. 139, 17052 (2017).
- [165]
Sanim Rahman, Vered Wineman-Fisher, Péter R. Nagy, Yasmine Al-Hamdani,
Alexandre Tkatchenko, and Sameer Varma: Methyl-induced polarization
destabilizes the noncovalent interactions of N-methylated lysines,
Chem. Eur. J. 27, 11005 (2021).
- [166]
Péter R. Nagy: State-of-the-art local correlation methods enable accurate
and affordable gold standard quantum chemistry up to a few hundred atoms,
Chem. Sci. 15, 14556 (2024).
- [167]
Basis Set Exchange, https://www.basissetexchange.org/.
- [168]
David J. Feller: The role of databases in support of computational chemistry
calculations,
J. Comput. Chem. 17, 1571 (1996).
- [169]
K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi,
J. Chase, J. Li, and T. L. Windus: Basis set exchange: A community database
for computational sciences,
J. Chem. Inf. Model. 47, 1045 (2007).
- [170]
Benjamin P. Pritchard, Doaa Altarawy, Brett Didier, Tara D. Gibson, and
Theresa L. Windus: A new basis set exchange: An open, up-to-date resource
for the molecular sciences community,
J. Chem. Inf. Model. 59, 4814 (2019).
- [171]
Miguel A. L. Marques, Micael J. T. Oliveira, and Tobias Burnus: Libxc:
A library of exchange and correlation functionals for density functional
theory,
Comput. Phys. Commun. 183, 2272 (2012).
- [172]
Susi Lehtola, Conrad Steigemann, Micael J. T. Oliveira, and Miguel A. L.
Marques: Recent developments in libxc – A comprehensive library of
functionals for density functional theory,
SoftwareX 7, 1 (2018).
- [173]
https://libxc.gitlab.io/,
Accessed Jan 1, 2025.
- [174]
Axel D. Becke: A multicenter numerical integration scheme for polyatomic
molecules,
J. Chem. Phys. 88, 2547 (1988).
- [175]
Oliver Treutler and Reinhart Ahlrichs: Efficient molecular numerical
integration schemes,
J. Chem. Phys. 102, 346 (1995).
- [176]
Thom H. Dunning Jr.: Gaussian basis sets for use in correlated molecular
calculations. I. The atoms boron through neon and hydrogen,
J. Chem. Phys. 90, 1007 (1989).
- [177]
Rick A. Kendall, Thom H. Dunning Jr., and Robert J. Harrison: Electron
affinities of the first-row atoms revisited. Systematic basis sets and wave
functions,
J. Chem. Phys. 96, 6796 (1992).
- [178]
David E. Woon and Thom H. Dunning Jr.: Gaussian basis sets for use in
correlated molecular calculations. III. The atoms aluminum through argon,
J. Chem. Phys. 98, 1358 (1993).
- [179]
David E. Woon and Thom H. Dunning Jr.: Gaussian basis sets for use in
correlated molecular calculations. V. Core-valence basis sets for boron
through neon,
J. Chem. Phys. 103, 4572 (1995).
- [180]
Kirk A. Peterson and Thom H. Dunning Jr.: Accurate correlation consistent
basis sets for molecular core-valence correlation effects: The second row
atoms Al-Ar, and the first row atoms B-Ne revisited,
J. Chem. Phys. 117, 10548 (2002).
- [181]
Thom H. Dunning Jr., Kirk A. Peterson, and Angela K. Wilson: Gaussian basis
sets for use in correlated molecular calculations. X. The atoms aluminum
through argon revisited,
J. Chem. Phys. 114, 9244 (2001).
- [182]
P. C. Hariharan and J. A. Pople: The influence of polarization functions on
molecular orbital hydrogenation energies,
Theor. Chem. Acc. 28, 213 (1973).
- [183]
R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople: Self-consistent
molecular orbital methods. XX. A basis set for correlated wave functions,
J. Chem. Phys. 72, 650 (1980).
- [184]
W. J. Hehre, R. Ditchfield, and J. A. Pople: Self-consistent molecular orbital
methods. XII. Further extensions of Gaussian-type basis sets for use in
molecular orbital studies of organic molecules,
J. Chem. Phys. 56, 2257 (1972).
- [185]
J. D. Dill and J. A. Pople: Self-consistent molecular orbital methods. XV.
Extended Gaussian-type basis sets for lithium, beryllium, and boron,
J. Chem. Phys. 62, 2921 (1975).
- [186]
M. M. Francl, W. J. Petro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J.
DeFrees, and J. A. Pople: Self-consistent molecular orbital methods. XXIII.
A polarization-type basis set for second-row elements,
J. Chem. Phys. 77, 3654 (1982).
- [187]
J. S. Binkley, J. A. Pople, and W. J. Hehre: Self-consistent molecular orbital
methods. 21. Small split-valence basis sets for first-row elements,
J. Am. Chem. Soc. 102, 939 (1980).
- [188]
M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, and W. J. Hehre:
Self-consistent molecular-orbital methods. 22. Small split-valence basis
sets for second-row elements,
J. Am. Chem. Soc. 104, 2797 (1983).
- [189]
A. D. McLean and G. S. Chandler: Contracted Gaussian basis sets for molecular
calculations. I. Second row atoms, Z=11-18,
J. Chem. Phys. 72, 5639 (1980).
- [190]
T. Clark, J. Chandrasekhar, G.W. Spitznagel, and P. v. R. Schleyer: Efficient
diffuse function-augmented basis sets for anion calculations. III. The
3-21+G basis set for first-row elements, Li-F,
J. Comput. Chem. 4, 294 (1983).
- [191]
Florian Weigend and Reinhart Ahlrichs: Balanced basis sets of split valence,
triple zeta valence and quadruple zeta valence quality for H to Rn:
Design and assessment of accuracy,
Phys. Chem. Chem. Phys. 7, 3297 (2005).
- [192]
Dmitrij Rappoport and Filipp Furche: Property-optimized Gaussian basis sets
for molecular response calculations,
J. Chem. Phys. 133, 134105 (2010).
- [193]
Kirk A. Peterson, Thomas B. Adler, and Hans-Joachim Werner: Systematically
convergent basis sets for explicitly correlated wavefunctions: The atoms
H, He, B-Ne, and Al-Ar,
J. Chem. Phys. 128, 084102 (2008).
- [194]
Thom H. Dunning Jr. and P. Jeffrey Hay,
Gaussian basis sets for molecular calculations,
in Methods of Electronic Structure Theory, edited by Henry F.
Schaefer III: volume 2: Plenum: New York: 1977.
- [195]
Florian Weigend, Marco Häser, Holger Patzelt, and Reinhart Ahlrichs:
RI-MP2: optimized auxiliary basis sets and demonstration of efficiency,
Chem. Phys. Lett. 294, 143 (1998).
- [196]
Florian Weigend, Andreas Köhn, and Christof Hättig: Efficient use of
the correlation consistent basis sets in resolution of the identity MP2
calculations,
J. Chem. Phys. 116, 3175 (2002).
- [197]
Arnim Hellweg and Dmitrij Rappoport: Development of new auxiliary basis
functions of the Karlsruhe segmented contracted basis sets including
diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for
RI-MP2 and RI-CC calculations,
Phys. Chem. Chem. Phys. 17, 1010 (2015).
- [198]
Florian Weigend: Hartree–Fock exchange fitting basis sets for H to Rn,
J. Comput. Chem. 29, 167 (2008).
- [199]
Florian Weigend: Accurate Coulomb-fitting basis sets for H to Rn,
Phys. Chem. Chem. Phys. 8, 1057 (2006).
- [200]
Kazim E. Yousaf and Kirk A. Peterson: Optimized auxiliary basis sets for
explicitly correlated methods,
J. Chem. Phys. 129, 184108 (2008).
- [201]
Kazim E. Yousaf and Kirk A. Peterson: Optimized complementary auxiliary basis
sets for explicitly correlated methods: aug-cc-pVnZ orbital basis sets,
Chem. Phys. Lett. 476, 303 (2009).
- [202]
J. Grant Hill, Shivnath Mazumder, and Kirk A. Peterson: Correlation consistent
basis sets for molecular core-valence effects with explicitly correlated wave
functions: The atoms B–Ne and Al–Ar,
J. Chem. Phys. 132, 054108 (2010).
- [203]
J. Grant Hill and Kirk A. Peterson: Explicitly correlated coupled cluster
calculations for molecules containing group 11 (Cu, Ag, Au) and 12
(Zn, Cd, Hg) elements: Optimized complementary auxiliary basis sets
for valence and core-valence basis sets,
J. Chem. Theory Comput. 8, 518 (2012).
- [204]
P. Jeffrey Hay and Willard R. Wadt: Ab initio effective core potentials for
molecular calculations. Potentials for the transition metal atoms Sc to
Hg,
J. Chem. Phys. 82, 270 (1985).
- [205]
Willard R. Wadt and P. Jeffrey Hay: Ab initio effective core potentials for
molecular calculations. Potentials for main group elements Na to Bi,
J. Chem. Phys. 82, 284 (1985).
- [206]
P. Jeffrey Hay and Willard R. Wadt: Ab initio effective core potentials for
molecular calculations. Potentials for K to Au including the outermost
core orbitals,
J. Chem. Phys. 82, 299 (1985).
- [207]
Kirk A. Peterson: Systematically convergent basis sets with relativistic
pseudopotentials. I. Correlation consistent basis sets for the post-d
group 13-15 elements,
J. Chem. Phys. 119, 11099 (2003).
- [208]
Kirk A. Peterson, Detlev Figgen, Erich Goll, Hermann Stoll, and Michael Dolg:
Systematically convergent basis sets with relativistic pseudopotentials.
II. Small-core pseudopotentials and correlation consistent basis sets for
the post-d group 16-18 elements,
J. Chem. Phys. 119, 11113 (2003).
- [209]
Kirk A Peterson and Cristina Puzzarini: Systematically convergent basis sets
for transition metals. II. Pseudopotential-based correlation consistent
basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg)
elements,
Theor. Chem. Acc. 114, 283 (2005).
- [210]
Kirk A. Peterson, Detlev Figgen, Michael Dolg, and Hermann Stoll:
Energy-consistent relativistic pseudopotentials and correlation consistent
basis sets for the 4d elements Y-Pd,
J. Chem. Phys. 126, 124101 (2007).
- [211]
Detlev Figgen, Kirk A. Peterson, Michael Dolg, and Hermann Stoll:
Energy-consistent pseudopotentials and correlation consistent basis sets for
the 5d elements Hf-Pt,
J. Chem. Phys. 130, 164108 (2009).
- [212]
Kirk A. Peterson and Kazim E. Yousaf: Molecular core-valence correlation
effects involving the post-d elements Ga-Rn: Benchmarks and new
pseudopotential-based correlation consistent basis sets,
J. Chem. Phys. 133, 174116 (2010).
- [213]
Christof Hättig: Optimization of auxiliary basis sets for RI-MP2 and
RI-CC2 calculations: Core-valence and quintuple- basis sets for
H to Ar and QZVPP basis sets for Li to Kr,
Phys. Chem. Chem. Phys. 7, 59 (2005).
- [214]
J. Grant Hill: Auxiliary basis sets for density-fitting second-order Møller–Plesset perturbation theory: Weighted core-valence correlation
consistent basis sets for the 4d elements Y-Pd,
J. Comput. Chem. 34, 2168 (2013).
- [215]
Stella Kritikou and J. Grant Hill: Auxiliary basis sets for density fitting in
explicitly correlated calculations: The atoms H–Ar,
J. Chem. Theory Comput. 11, 5269 (2015).
- [216]
A correlation consistent basis sets repository,
http://www.grant-hill.group.shef.ac.uk/ccrepo/,
Accessed Jan 1, 2025.
- [217]
James W. Boughton and Peter Pulay: Comparison of the Boys and
Pipek–Mezey localizations in the local correlation approach and
automatic virtual basis selection,
J. Comput. Chem. 14, 736 (1993).
- [218]
Julien Toulouse, Wuming Zhu, Andreas Savin, Georg Jansen, and János G.
Ángyán: Closed-shell ring coupled cluster doubles theory with range
separation applied on weak intermolecular interactions,
J. Chem. Phys. 135, 084119 (2011).
- [219]
Christof Hättig and Florian Weigend: CC2 excitation energy calculations
on large molecules using the resolution of the identity approximation,
J. Chem. Phys. 113, 5154 (2000).
- [220]
Nisha Mehta and Jan M. L. Martin: Explicitly correlated double-hybrid DFT:
A comprehensive analysis of the basis set convergence on the GMTKN55
database,
J. Chem. Theory Comput. 18, 5978 (2022).
- [221]
Sonia Coriani and Henrik Koch: Communication: X-ray absorption spectra and
core-ionization potentials within a core-valence separated coupled cluster
framework,
J. Chem. Phys. 143, 181103 (2015).
- [222]
L. S. Cederbaum, W. Domcke, and J. Schirmer: Many-body theory of core holes,
Phys. Rev. A 22, 206 (1980).
- [223]
Akio Takatsuka, Seiichiro Ten-no, and Wolfgang Hackbusch: Minimax
approximation for the decomposition of energy denominators in
Laplace-transformed Møller–Plesset perturbation theories,
J. Chem. Phys. 129, 044112 (2008).
- [224]
Alejandro J. Garza, Ireneusz W. Bulik, Thomas M. Henderson, and Gustavo E.
Scuseria: Range separated hybrids of pair coupled cluster doubles and density
functionals,
Phys. Chem. Chem. Phys. 17, 22412 (2015).
- [225]
Functionals were obtained from the Density Functional Repository as
developed and distributed by the Quantum Chemistry Group, CCLRC
Daresbury Laboratory, Daresbury, Cheshire, WA4 4AD United
Kingdom. Contact Huub van Dam (h.j.j.vandam@dl.ac.uk) or Paul
Sherwood for further information.
- [226]
R. Strange, F. R. Manby, and P. J. Knowles: Automatic code generation in
density functional theory,
Comput. Phys. Commun. 136, 310 (2001).
- [227]
Stefan Grimme, Jens Antony, Stephan Ehrlich, and Helge Krieg: A consistent and
accurate ab initio parametrization of density functional dispersion
correction (DFT-D) for the 94 elements H-Pu,
J. Chem. Phys. 132, 154104 (2010).
- [228]
Stefan Grimme, Stephan Ehrlich, and Lars Goerigk: Effect of the damping
function in dispersion corrected density functional theory,
J. Comput. Chem. 32, 1456 (2011).
- [229]
P. A. M. Dirac: Quantum mechanics of many-electron systems,
Proc. R. Soc. London A 123, 714 (1929).
- [230]
J. C. Slater: A simplification of the Hartree–Fock method,
Phys. Rev. 81, 385 (1951).
- [231]
S. H. Vosko, L. Wilk, and M. Nusair: Accurate spin-dependent electron liquid
correlation energies for local spin density calculations: A critical
analysis,
Can. J. Phys. 58, 1200 (1980).
- [232]
J. P. Perdew and A. Zunger: Self-interaction correction to density-functional
approximations for many-electron systems,
Phys. Rev. B 23, 5048 (1981).
- [233]
J. P. Perdew and Y. Wang: Accurate and simple analytic representation of the
electron-gas correlation energy,
Phys. Rev. B 45, 13244 (1992).
- [234]
Axel D. Becke: Density-functional exchange-energy approximation with correct
asymptotic-behavior,
Phys. Rev. A 38, 3098 (1988).
- [235]
John P. Perdew, Kieron Burke, and Matthias Ernzerhof: Generalized gradient
approximation made simple,
Phys. Rev. Lett. 77, 3865 (1996).
- [236]
M. Ernzerhof and J. P. Perdew: Generalized gradient approximation to the angle-
and system-averaged exchange hole,
J. Chem. Phys. 109, 3313 (1998).
- [237]
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J.
Singh, and C. Fiolhais: Atoms, molecules, solids and surfaces: Applications
of the generalized gradient approximation for exchange and correlation,
Phys. Rev. B 46, 6671 (1992).
- [238]
C. Adamo and V. Barone: Exchange functionals with improved long-range behavior
and adiabatic connection methods without adjustable parameters: The mPW
and mPW1PW models,
J. Chem. Phys. 108, 664 (1998).
- [239]
Javier Carmona-Espíndola, José L. Gázquez, Alberto Vela, and S. B.
Trickey: Generalized gradient approximation exchange energy functional with
near-best semilocal performance,
J. Chem. Theory Comput. 15, 303 (2019).
- [240]
C. Lee, W. Yang, and R. G. Parr: Development of the Colle–Salvetti
correlation-energy formula into a functional of the electron density,
Phys. Rev. B 37, 785 (1988).
- [241]
John P. Perdew: Density-functional approximation for the correlation energy of
the inhomogeneous electron gas,
Phys. Rev. B 33, 8822 (1986).
- [242]
A. Daniel Boese, Nikos L. Doltsinis, Nicholas C. Handy, and Michiel Sprik: New
generalized gradient approximation functionals,
J. Chem. Phys. 112, 1670 (2000).
- [243]
A. Daniel Boese and Nicholas C. Handy: A new parametriztion of
exchange-correlation generalized gradient approximation functionals,
J. Chem. Phys. 114, 5497 (2001).
- [244]
Xin Xu and William A. Goddard III: The X3LYP extended density functional
for accurate descriptions of nonbond interactions, spin states, and
thermochemical properties,
Proc. Natl. Acad. Sci. U.S.A. 101, 2673 (2004).
- [245]
E. E. Dahlke and D. G. Truhlar: Improved density functionals for water,
J. Phys. Chem. B 109, 15677 (2005).
- [246]
Axel D. Becke: A new mixing of Hartree–Fock and local density-functional
theories,
J. Chem. Phys. 98, 1372 (1993).
- [247]
Axel D. Becke: Density-functional thermochemistry. III. The role of exact
exchange,
J. Chem. Phys. 98, 5648 (1993).
- [248]
P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch: Ab initio
calculation of vibrational absorption and circular dichroism spectra using
density functional force fields,
J. Phys. Chem. 98, 11623 (1994).
- [249]
C. Adamo and V. Barone: Toward reliable adiabatic connection models free from
adjustable parameters,
Chem. Phys. Lett. 274, 242 (1997).
- [250]
A. J. Cohen and N. C. Handy: Dynamic correlation,
Mol. Phys. 99, 607 (2001).
- [251]
Axel D. Becke: Density-functional thermochemistry. V. Systematic
optimization of exchange-correlation functionals,
J. Chem. Phys. 107, 8554 (1997).
- [252]
John P. Perdew, Matthias Ernzerhof, and Kieron Burke: Rationale for mixing
exact exchange with density functional approximations,
J. Chem. Phys. 105, 9982 (1996).
- [253]
J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria: Climbing the
density functional ladder: Nonempirical meta-generalized gradient
approximation designed for molecules and solids,
Phys. Rev. Lett. 91, 146401 (2003).
- [254]
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. Sun:
Workhorse semilocal density functional for condensed matter physics and
quantum chemistry,
Phys. Rev. Lett. 103, 026403 (2009).
- [255]
Jianwei Sun, Adrienn Ruzsinszky, and John P. Perdew: Strongly constrained and
appropriately normed semilocal density functional,
Phys. Rev. Lett. 115, 036402 (2015).
- [256]
A. D. Becke: Density-functional thermochemistry. IV. A new dynamical
correlation functional and implications for exact-exchange mixing,
J. Chem. Phys. 104, 1040 (1996).
- [257]
Pál D. Mezei, Gábor I. Csonka, and Mihály Kállay: Simple
modifications of the SCAN meta-generalized gradient approximation
functional,
J. Chem. Theory Comput. 14, 2469 (2018).
- [258]
Y. Zhao and D. G. Truhlar: The M06 suite of density functionals for main
group thermochemistry, thermochemical kinetics, noncovalent interactions,
excited states, and transition elements: two new functionals and systematic
testing of four M06-class functionals and 12 other functionals,
Theor. Chem. Acc. 120, 215 (2006).
- [259]
Y. Zhao and D. G. Truhlar: A new local density functional for main-group
thermochemistry, transition metal bonding, thermochemical kinetics, and
noncovalent interactions,
J. Chem. Phys. 125, 194101 (2006).
- [260]
Narbe Mardirossian and Martin Head-Gordon: Mapping the genome of
meta-generalized gradient approximation density functionals: The search for
B97M-V,
J. Chem. Phys. 142, 074111 (2015).
- [261]
Yan Zhao and Donald G. Truhlar: Density functional for spectroscopy: No
long-range self-interaction error, good performance for Rydberg and
charge-transfer states, and better performance on average than B3LYP for
ground states,
J. Phys. Chem. A 110, 13126 (2006).
- [262]
Y. Zhao and D. G. Truhlar: Exploring the limit of accuracy of the global hybrid
meta density functional for main-group thermochemistry, kinetics, and
noncovalent interactions,
J. Chem. Theory Comput. 4, 1849 (2008).
- [263]
V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew: Comparative
assessment of a new nonempirical density functional: Molecules and
hydrogen-bonded complexes,
J. Chem. Phys. 119, 12129 (2003).
- [264]
G. I. Csonka, J. P. Perdew, and A. Ruzsinszky: Global hybrid functionals: A
look at the engine under the hood,
J. Chem. Theory Comput. 6, 3688 (2010).
- [265]
Y. Zhao and D. G. Truhlar: Hybrid meta density functional theory methods for
thermochemistry, thermochemical kinetics, and noncovalent interactions: The
MPW1B95 and MPWB1K models and comparative assessments for hydrogen
bonding and van der Waals interactions,
J. Phys. Chem. A 108, 6908 (2004).
- [266]
Y. Zhao and D. G. Truhlar: Design of density functionals that are broadly
accurate for thermochemistry, thermochemical kinetics, and nonbonded
interactions,
J. Phys. Chem. A 109, 5656 (2005).
- [267]
Haoyu S. Yu, Xiao He, Shaohong L. Li, and Donald G. Truhlar: MN15: A
Kohn–Sham global-hybrid exchange-correlation density functional with
broad accuracy for multi-reference and single-reference systems and
noncovalent interactions,
Chem. Sci. 7, 5032 (2016).
- [268]
Kerwin Hui and Jeng-Da Chai: SCAN-based hybrid and double-hybrid density
functionals from models without fitted parameters,
J. Chem. Phys. 144, 044114 (2016).
- [269]
Erich Goll, Hans-Joachim Werner, and Hermann Stoll: A short-range
gradient-corrected density functional in long-range coupled-cluster
calculations for rare gas dimers,
Phys. Chem. Chem. Phys. 7, 3917 (2005).
- [270]
Jochen Heyd, Gustavo E. Scuseria, and Matthias Ernzerhof: Hybrid functionals
based on a screened Coulomb potential,
J. Chem. Phys. 118, 8207 (2003).
- [271]
Aliaksandr V. Krukau, Oleg A. Vydrov, Artur F. Izmaylov, and Gustavo E.
Scuseria: Influence of the exchange screening parameter on the performance of
screened hybrid functionals,
J. Chem. Phys. 125, 224106 (2006).
- [272]
Oleg A. Vydrov and Gustavo E. Scuseria: Assessment of a long-range corrected
hybrid functional,
J. Chem. Phys. 125, 234109 (2006).
- [273]
Jeng-Da Chai and Martin Head-Gordon: Systematic optimization of long-range
corrected hybrid density functionals,
J. Chem. Phys. 128, 084106 (2008).
- [274]
Narbe Mardirossian and Martin Head-Gordon: B97X-V: A 10-parameter,
range-separated hybrid, generalized gradient approximation density functional
with nonlocal correlation, designed by a survival-of-the-fittest strategy,
Phys. Chem. Chem. Phys. 16, 9904 (2014).
- [275]
Roberto Peverati and Donald G. Truhlar: Improving the accuracy of hybrid
meta-GGA density functionals by range separation,
J. Phys. Chem. Lett. 2, 2810 (2011).
- [276]
Roberto Peverati and Donald G. Truhlar: Screened-exchange density functionals
with broad accuracy for chemistry and solid-state physics,
Phys. Chem. Chem. Phys. 14, 16187 (2012).
- [277]
Narbe Mardirossian and Martin Head-Gordon: B97M-V: A combinatorially
optimized, range-separated hybrid, meta-GGA density functional with VV10
nonlocal correlation,
J. Chem. Phys. 144, 214110 (2016).
- [278]
Amir Karton, Alex Tarnopolsky, Jean-Francois Lamère, George C. Schatz, and
Jan M. L. Martin: Highly accurate first-principles benchmark data sets for
the parametrization and validation of density functional and other
approximate methods. Derivation of a robust, generally applicable,
double-hybrid functional for thermochemistry and thermochemical kinetics,
J. Phys. Chem. A 112, 12868 (2008).
- [279]
Sebastian Kozuch and Jan M. L. Martin: DSD-PBEP86: in search of the best
double-hybrid DFT with spin-component scaled MP2 and dispersion
corrections,
Phys. Chem. Chem. Phys. 13, 20104 (2011).
- [280]
Sebastian Kozuch and Jan M. L. Martin: Spin-component-scaled double hybrids:
An extensive search for the best fifth-rung functionals blending DFT and
perturbation theory,
J. Comput. Chem. 34, 2327 (2013).
- [281]
Ying Zhang, Xin Xu, and William A. Goddard III: Doubly hybrid density
functional for accurate descriptions of nonbond interactions,
thermochemistry, and thermochemical kinetics,
Proc. Natl. Acad. Sci. U.S.A. 106, 4963 (2009).
- [282]
Lars Goerigk and Stefan Grimme: Efficient and accurate double-hybrid-meta-GGA
density functionals – Evaluation with the extended GMTKN30 database for
general main group thermochemistry, kinetics, and noncovalent interactions,
J. Chem. Theory Comput. 7, 291 (2011).
- [283]
Brina Brauer, Manoj K. Kesharwani, Sebastian Kozuch, and Jan M. L. Martin: The
S66x8 benchmark for noncovalent interactions revisited: explicitly
correlated ab initio methods and density functional theory,
Phys. Chem. Chem. Phys. 18, 20905 (2016).
- [284]
Oleg A. Vydrov and Troy Van Voorhis: Nonlocal van der Waals density
functional: The simpler the better,
J. Chem. Phys. 133, 244103 (2010).
- [285]
Golokesh Santra, Emmanouil Semidalas, and Jan M. L. Martin: Surprisingly good
performance of XYG3 family functionals using a scaled KS-MP3 correlation,
J. Phys. Chem. Lett. 12, 9368 (2021).
- [286]
Golokesh Santra, Emmanouil Semidalas, and Jan M. L. Martin: Exploring avenues
beyond revised DSD functionals: II. Random-phase approximation and scaled
MP3 corrections,
J. Phys. Chem. A 125, 4628 (2021).
- [287]
Jeppe Olsen, Poul Jørgensen, and Jack Simons: Passing the one-billion limit
in full configuration-interaction (FCI) calculations,
Chem. Phys. Lett. 169, 463 (1990).
- [288]
Mihály Kállay and Péter R. Surján: Computing coupled-cluster wave
functions with arbitrary excitations,
J. Chem. Phys. 113, 1359 (2000).
- [289]
D. Andrae, U. Häußermann, M. Dolg, H. Stoll, and H. Preuß:
Energy-adjusted ab initio pseudopotentials for the second and third row
transition elements,
Theor. Chem. Acc. 77, 123 (1990).
- [290]
M. Kaupp, P. v. R. Schleyer, H. Stoll, and H. Preuss: Pseudopotential
approaches to Ca, Sr, and Ba hydrides. Why are some alkaline earth
MX2 compounds bent?,
J. Chem. Phys. 94, 1360 (1991).
- [291]
Thierry Leininger, Andreas Nicklass, Wolfgang Küchle, Hermann Stoll,
Michael Dolg, and Andreas Bergner: The accuracy of the pseudopotential
approximation: non-frozen-core effects for spectroscopic constants of alkali
fluorides XF (X = K, Rb, Cs),
Chem. Phys. Lett. 255, 274 (1996).
- [292]
Bernhard Metz, Marcus Schweizer, Hermann Stoll, Michael Dolg, and Wenjian Liu:
A small-core multiconfiguration Dirac–Hartree–Fock-adjusted
pseudopotential for Tl – application to TlX (X = F, Cl, Br,
I),
Theor. Chem. Acc. 104, 22 (2000).
- [293]
Bernhard Metz, Hermann Stoll, and Michael Dolg: Small-core
multiconfiguration-Dirac–Hartree–Fock-adjusted pseudopotentials for
post-d main group elements: Application to PbH and PbO,
J. Chem. Phys. 113, 2563 (2000).
- [294]
K. A. Peterson, B. C. Shepler, D. Figgen, and H. Stoll: On the spectroscopic
and thermochemical properties of ClO, BrO, IO, and their anions,
J. Phys. Chem. A 110, 13877 (2006).
- [295]
Detlev Figgen, Guntram Rauhut, Michael Dolg, and Hermann Stoll:
Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to
multi-configuration Dirac–Hartree–Fock data,
Chem. Phys. 311, 227 (2005).
- [296]
Daniel Claudino and Nicholas J. Mayhall: Automatic partition of orbital spaces
based on singular value decomposition in the context of embedding theories,
J. Chem. Theory Comput. 15, 1053 (2019).
- [297]
Ádám B. Szirmai, Bence Hégely, Attila Tajti, Mihály Kállay,
and Péter G. Szalay: Projected atomic orbitals as optimal virtual space
for excited state projection-based embedding calculations,
J. Chem. Theory Comput. 20, 3420 (2024).
- [298]
Curt M. Breneman and Kenneth B. Wiberg: Determining atom-centered monopoles
from molecular electrostatic potentials. The need for high sampling density
in formamide conformational analysis,
J. Comput. Chem. 11, 361 (1990).
- [299]
U. Chandra Singh and Peter A. Kollman: An approach to computing electrostatic
charges for molecules,
J. Comput. Chem. 5, 129 (1984).
- [300]
David P. Tew and Wim Klopper: New correlation factors for explicitly correlated
electronic wave functions,
J. Chem. Phys. 123, 074101 (2005).
- [301]
Reinhart Ahlrichs: Efficient evaluation of three-center two-electron integrals
over Gaussian functions,
Phys. Chem. Chem. Phys. 6, 5119 (2004).
- [302]
S. Reine, E. Tellgren, and T. Helgaker: A unified scheme for the calculation of
differentiated and undifferentiated molecular integrals over solid-harmonic
Gaussians,
Phys. Chem. Chem. Phys. 9, 4771 (2007).
- [303]
Matthias Krack and Andreas M. Köster: An adaptive numerical integrator for
molecular integrals,
J. Chem. Phys. 108, 3226 (1998).
- [304]
Christopher W. Murray, Nicholas C. Handy, and Gregory J. Laming: Quadrature
schemes for integrals of density functional theory,
Mol. Phys. 78, 997 (1993).
- [305]
M. E. Mura and P. J. Knowles: Improved radial grids for quadrature in molecular
density functional calculations,
J. Chem. Phys. 104, 9848 (1996).
- [306]
Ciro A. Guido, Pietro Cortona, Benedetta Mennucci, and Carlo Adamo: On the
metric of charge transfer molecular excitations: A simple chemical
descriptor,
J. Chem. Theory Comput. 9, 3118 (2013).
- [307]
Jetze Sikkema, Lucas Visscher, Trond Saue, and Miroslav Iliaš: The
molecular mean-field approach for correlated relativistic calculations,
J. Chem. Phys. 131, 124116 (2009).
- [308]
S. Obara and A. Saika: Efficient recursive computation of molecular integrals
over Cartesian Gaussian functions,
J. Chem. Phys. 84, 3963 (1986).
- [309]
R. Lindh, U. Ryu, and B. Liu: The reduced multiplication scheme of the Rys
quadrature and new recurrence relations for auxiliary function based
two-electron integral evaluation,
J. Chem. Phys. 95, 5889 (1991).
- [310]
Harry F. King and Michel Dupuis: Numerical integration using Rys polynomials,
J. Comput. Phys. 21, 144 (1976).
- [311]
N. Flocke: On the use of shifted Jacobi polynomials in accurate evaluation of
roots and weights of Rys polynomials,
J. Chem. Phys. 131, 064107 (2009).
- [312]
Christoph Riplinger and Frank Neese: An efficient and near linear scaling pair
natural orbital based local coupled cluster method,
J. Chem. Phys. 138, 034106 (2013).
- [313]
Peter Pinski, Christoph Riplinger, Edward F. Valeev, and F. Neese: Sparse
maps—A systematic infrastructure for reduced-scaling electronic structure
methods. I. An efficient and simple linear scaling local MP2 method
that uses an intermediate basis of pair natural orbitals,
J. Chem. Phys. 143, 034108 (2015).
- [314]
S. J. Mo, T. Vreven, B. Mennucci, K. Morokuma, and J. Tomasi: Theoretical study
of the SN2 reaction of Cl-(H2O)+CH3Cl using our
own N-layered integrated molecular orbital and molecular mechanics
polarizable continuum model method (ONIOM, PCM),
Theor. Chem. Acc. 111, 154 (2004).
- [315]
T. Vreven, B. Mennucci, C. O. da Silva, K. Morokuma, and J. Tomasi: The
ONIOM-PCM method: Combining the hybrid molecular orbital method and the
polarizable continuum model for solvation. Application to the geometry and
properties of a merocyanine in solution,
J. Chem. Phys. 115, 62 (2001).
- [316]
J. A. Nelder and R. Mead: A simplex method for function minimization,
Comput. J. 7, 308 (1965).
- [317]
Francesco Aquilante, Thomas Bondo Pedersen, Alfredo M. Sánchez de Merás,
and Henrik Koch: Fast noniterative orbital localization for large molecules,
J. Chem. Phys. 125, 174101 (2006).
- [318]
J. M. Foster and S. F. Boys: Canonical configurational interaction procedure,
Rev. Mod. Phys. 32, 300 (1960).
- [319]
J. Pipek and P. Mezey: A fast intrinsic localization procedure applicable for
ab initio and semiempirical linear combination of atomic orbital wave
functions,
J. Chem. Phys. 90, 4916 (1989).
- [320]
Gerald Knizia: Intrinsic atomic orbitals: An unbiased bridge between quantum
theory and chemical concepts,
J. Chem. Theory Comput. 9, 4834 (2013).
- [321]
B. Jansík, S. Høst, K. Kristensen, and P. Jørgensen: Local orbitals
by minimizing powers of the orbital variance,
J. Chem. Phys. 134, 194104 (2011).
- [322]
Pavel Neogrády, Michal Pitoňák, and Miroslav Urban: Optimized virtual
orbitals for correlated calculations: An alternative approach,
Mol. Phys. 103, 2141 (2005).
- [323]
R. S. Mulliken: Electronic population analysis on LCAO-MO molecular wave
functions. I,
J. Chem. Phys. 23, 1833 (1955).
- [324]
I. Mayer: Charge, bond order and valence in the ab initio SCF theory,
Chem. Phys. Lett. 97, 270 (1983).
- [325]
Frank Neese: Importance of direct spin–spin coupling and spin-flip excitations
for the zero-field splittings of transition metal complexes: A case study,
J. Am. Chem. Soc. 128, 10213 (2006).
- [326]
Georg Hetzer, Peter Pulay, and Hans-Joachim Werner: Multipole approximation of
distant pair energies in local MP2 calculations,
Chem. Phys. Lett. 290, 143 (1998).
- [327]
Gijs Schaftenaar and Jan H. Noordik: Molden: a pre- and post-processing program
for molecular and electronic structures,
J. Comput.-Aided Mol. Design 14, 123 (2000).